NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 513 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Linyan Li; Xiao Bai; Hongshan Xia – Education and Information Technologies, 2024
The higher the level of development of higher education, the larger its contribution to socioeconomic development. In order to predict the trend of higher education development in a country more accurately, a new methodology is employed in this study. A weakening buffer operator-based GM (1, 1) model is constructed using Kazakhstan's gross…
Descriptors: Prediction, Educational Trends, Higher Education, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Neumuller, Seth – Journal of Economic Education, 2023
The author of this article demonstrates how the unified approach to answering economic questions employed in modern quantitative macroeconomics research can be taught to undergraduate students using the Solow model. Through an application to post-WWII Japan, students get hands-on experience with (1) documenting empirical facts, (2) developing a…
Descriptors: Macroeconomics, Undergraduate Students, Prediction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Harikesh Singh; Li-Minn Ang; Dipak Paudyal; Mauricio Acuna; Prashant Kumar Srivastava; Sanjeev Kumar Srivastava – Technology, Knowledge and Learning, 2025
Wildfires pose significant environmental threats in Australia, impacting ecosystems, human lives, and property. This review article provides a comprehensive analysis of various empirical and dynamic wildfire simulators alongside machine learning (ML) techniques employed for wildfire prediction in Australia. The study examines the effectiveness of…
Descriptors: Artificial Intelligence, Computer Software, Computer Simulation, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Esh, Manash; Ghosh, Saptarshi – Journal of Electronic Resources Librarianship, 2023
This case study examines the use of electronic resources in academic institutions and the difficulties in forecasting their usage. By employing time series analysis-based models, the study forecasts the utilization of e-resources from 2012 to 2021. It concludes that both Autoregressive Integrated Moving Average (ARIMA) and Error, Trend, Seasonal…
Descriptors: Prediction, Educational Resources, Electronic Publishing, Academic Libraries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jullie Jeanette Sondakh; Joy Elly Tulung – Journal of Education and e-Learning Research, 2024
This study aims to predict accounting students' inclination toward a career in accounting in Indonesia by integrating the Social Cognitive Career Theory (SCCT) and the Theory of Reasoned Action (TRA). The research relies on primary data obtained through an online, closed-ended questionnaire. We employ Structural Equation Modeling (SEM) for the…
Descriptors: Prediction, Intention, Student Attitudes, Career Choice
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, Hernán A.; Quezada, Luis E.; Oddershede, A. M.; Palominos, Pedro I.; O'Brien, Christopher – Journal of College Student Retention: Research, Theory & Practice, 2023
The objective of this paper is the design of a predictive model of students' desertion in Educational Institutions based on the Analytic Hierarchy Process (AHP). The proposed model is based on a weighted sum of individual probabilities of desertion associated with various factors (explanatory variables) by experts in the combined use of the AHP…
Descriptors: Foreign Countries, Prediction, Models, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Yizhuo; Zhao, Jin; Zhang, Jianjun – Interactive Learning Environments, 2023
On e-learning platforms, most e-learners didn't complete the course successfully. It means that reducing dropout is a critical problem for the sustainability of e-learning. This paper aims to establish a predictive model to describe e-learners' dropout behavior, which can help the commercial e-learning platforms to make appropriate interventions…
Descriptors: Electronic Learning, Prediction, Dropouts, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Jansen in de Wal, Joost; de Jong, Bas; Cornelissen, Frank; de Brabander, Cornelis – Learning Organization, 2023
Purpose: This study aims to investigate the merits of the unified model of task-specific motivation (UMTM) in predicting transfer of training and to investigate (relationships between) changes in UMTM components over time. In doing so, this study takes the multidimensionality of transfer motivation into account. Design/methodology/approach: The…
Descriptors: Transfer of Training, Employee Attitudes, Motivation, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Chen, Qiongqiong – International Education Studies, 2022
Predictive research on the enrollment proportion of general education and vocational education is crucial to optimizing the regional talent structure and industrial structure adjustment. The reasonable enrollment proportion of general education and vocational education also plays an important role in the adjustment of the overall employment…
Descriptors: Prediction, Enrollment, General Education, Vocational Education
Peer reviewed Peer reviewed
Direct linkDirect link
Tao Huang; Jing Geng; Yuxia Chen; Han Wang; Huali Yang; Shengze Hu – Education and Information Technologies, 2024
Digital technology is profoundly transforming various aspects of life, thus highlighting the need to enhance digital literacy on a national scale. In primary and secondary schools, artificial intelligence (AI) education plays a pivotal role in fostering digital literacy. To comprehensively investigate the variables influencing AI education in…
Descriptors: Artificial Intelligence, Elementary Schools, Secondary Schools, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Meriem Zerkouk; Miloud Mihoubi; Belkacem Chikhaoui; Shengrui Wang – Education and Information Technologies, 2024
School dropout is a significant issue in distance learning, and early detection is crucial for addressing the problem. Our study aims to create a binary classification model that anticipates students' activity levels based on their current achievements and engagement on a Canadian Distance learning Platform. Predicting student dropout, a common…
Descriptors: Artificial Intelligence, Dropouts, Prediction, Distance Education
Peer reviewed Peer reviewed
Direct linkDirect link
Ates, Hüseyin; Garzón, Juan – Education and Information Technologies, 2023
Many studies show that augmented reality (AR) provides multiple benefits to science education, including learning gains, motivation to learn, and collaborative learning. However, while using AR largely depends on the teachers' willingness, existing literature lacks studies that identify teachers' intentions to use this technology. This study…
Descriptors: Models, Intention, Technology Uses in Education, Computer Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Achmad Bisri; Supardi; Yayu Heryatun; Hunainah; Annisa Navira – Journal of Education and Learning (EduLearn), 2025
In the educational landscape, educational data mining has emerged as an indispensable tool for institutions seeking to deliver exceptional and high-quality education. However, education data revealed suboptimal academic performance among a significant portion of the student population, which consequently resulted in delayed graduation. This…
Descriptors: Data Analysis, Models, Academic Achievement, Evaluation Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Montree Chinsomboon; Pallop Piriyasurawong – Higher Education Studies, 2024
The article is in the second phase of research is about "the big data architecture for pre-teacher preparation supply chain with prescriptive analytics of higher education in Thailand". The objectives of the study were (1) to study the pre-teacher preparation supply chain in Thailand, (2) to develop a model the big data system for the…
Descriptors: Supply and Demand, Information Management, Preservice Teacher Education, Preservice Teachers
Takashi Kawakami; Akihiko Saeki – Mathematics Education Research Group of Australasia, 2024
This study elaborates on the pivotal roles of mathematical and statistical models in data-driven predictions in an integrated STEM context using the case of Year 4 students: (?) "a descriptive means" to describe the features of trends and variability of data and (?) "an explanatory means" to explain causal relationships behind…
Descriptors: Mathematical Models, Statistical Analysis, Data Use, Prediction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  35