NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20250
Since 20240
Since 2021 (last 5 years)0
Since 2016 (last 10 years)5
Since 2006 (last 20 years)15
Audience
Teachers2
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 16 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ollerton, Richard L. – Australian Mathematics Education Journal, 2020
In this paper, Richard Ollerton presents two alternative approaches to proving the six standard trigonometric angle sum and difference identities. They are suitable for students who have an understanding of rotation matrices.
Descriptors: Mathematics Instruction, Teaching Methods, Trigonometry, Geometric Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Smith, Emily M.; Zwolak, Justyna P.; Manogue, Corinne A. – Physical Review Physics Education Research, 2019
Mathematical reasoning with algebraic and geometric representations is essential for success in upperdivision and graduate-level physics courses. Complex algebra requires student to fluently move between algebraic and geometric representations. By designing a task for middle-division physics students to translate a geometric representation to…
Descriptors: College Students, Physics, Science Instruction, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Ollerton, Richard L. – Australian Senior Mathematics Journal, 2018
Two important pedagogical techniques for developing deeper mathematical understanding are to prove a given theorem in different ways and to unify the proofs of different theorems. Trigonometric angle sum and difference identities are introduced in Unit 2 of Specialist Mathematics in the Australian Curriculum (Australian Curriculum, Assessment and…
Descriptors: Mathematics Instruction, Geometry, Geometric Concepts, Trigonometry
Peer reviewed Peer reviewed
Direct linkDirect link
Oxman, Victor; Stupel, Moshe – International Journal of Mathematical Education in Science and Technology, 2018
A geometrical task is presented with multiple solutions using different methods, in order to show the connection between various branches of mathematics and to highlight the importance of providing the students with an extensive 'mathematical toolbox'. Investigation of the property that appears in the task was carried out using a computerized tool.
Descriptors: Mathematics Instruction, Problem Solving, Geometry, Algebra
Peer reviewed Peer reviewed
Direct linkDirect link
Sigler, Avi; Segal, Ruti; Stupel, Moshe – International Journal of Mathematical Education in Science and Technology, 2016
Solution of problems in mathematics, and in particular in the field of Euclidean geometry is in many senses a form of artisanship that can be developed so that in certain cases brief and unexpected solutions may be obtained, which would bring out aesthetically pleasing mathematical traits. We present four geometric tasks for which different proofs…
Descriptors: Mathematical Logic, Validity, Mathematics, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Moore, Kevin c.; LaForest, Kevin R. – Mathematics Teacher, 2014
How do students think about an angle measure of ninety degrees? How do they think about ratios and values on the unit circle? How might angle measure be used to connect right-triangle trigonometry and circular functions? And why might asking these questions be important when introducing trigonometric functions to students? When teaching…
Descriptors: Trigonometry, Mathematics Instruction, Mathematical Concepts, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Ezenweani, Ugwunna Louis – Education, 2013
Pythagoras Theorem is an old mathematical treatise that has traversed the school curricula from secondary to tertiary levels. The patterns it produced are quite interesting that many researchers have tried to generate a kind of predictive approach to identifying triples. Two attempts, namely Diophantine equation and Brahmagupta trapezium presented…
Descriptors: Mathematics Instruction, Geometric Concepts, Equations (Mathematics), Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Foster, Colin – Australian Senior Mathematics Journal, 2013
Pythagoras' theorem in two and three dimensions appears in General Mathematics, Units 1-2, section 6 (Geometry and trigonometry: Shape and measurement) in the Victorian Certificate of Education Mathematics Study Design (Victorian Curriculum Assessment Authority, 2010). It also comes in Further Mathematics, Units 3-4 (Applications: Geometry and…
Descriptors: Mathematics Instruction, Geometric Concepts, Geometry, Trigonometry
Peer reviewed Peer reviewed
Direct linkDirect link
Coates, Keith J. – College Mathematics Journal, 2011
Using a simple trigonometric limit, we provide an intuitive geometric proof of the Singular Value Decomposition of an arbitrary matrix.
Descriptors: Geometric Concepts, Geometry, Mathematical Logic, College Mathematics
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Zhonghong; O'Brien, George E. – Mathematics Teacher, 2012
One of the most rewarding accomplishments of working with preservice secondary school mathematics teachers is helping them develop conceptually connected knowledge and see mathematics as an integrated whole rather than isolated pieces. To help students see and use the connections among various mathematical topics, the authors have paid close…
Descriptors: Geometric Concepts, Mathematics Instruction, Secondary School Mathematics, Preservice Teachers
Peer reviewed Peer reviewed
Direct linkDirect link
Wu, Yu-Dong; Zhang, Zhi-Hua; Liang, Chun-Lei – International Journal of Mathematical Education in Science and Technology, 2010
In this short note, by using one of Li and Liu's theorems [K.-H. Li, "The solution of CIQ. 39," "Commun. Stud. Inequal." 11(1) (2004), p. 162 (in Chinese)], "s-R-r" method, Cauchy's inequality and the theory of convex function, we solve some geometric inequalities conjectures relating to an interior point in triangle. (Contains 1 figure.)
Descriptors: Mathematics Education, Geometric Concepts, Trigonometry, Mathematical Logic
Peer reviewed Peer reviewed
Direct linkDirect link
Hodges, Thomas E. – Mathematics Teacher, 2007
This article describes an alternate way to utilize a circular model to represent thirds by incorporating areas of circular segments, trigonometric functions, and geometric transformations. This method is appropriate for students studying geometry and trigonometry at the high shool level. This task provides valuable learning experiences that…
Descriptors: Geometric Concepts, Trigonometry, Mathematics Activities, Mathematical Models
Peer reviewed Peer reviewed
Direct linkDirect link
Sastry, K. R. S. – Mathematics and Computer Education, 2007
This paper takes a known point from Brocard geometry, a known result from the geometry of the equilateral triangle, and bring in Euler's [empty set] function. It then demonstrates how to obtain new Brocard Geometric number theory results from them. Furthermore, this paper aims to determine a [triangle]ABC whose Crelle-Brocard Point [omega]…
Descriptors: Geometric Concepts, Number Concepts, Geometry, Theories
Hewitt, Dave – Mathematics Teaching Incorporating Micromath, 2007
In this article, the author offers two well-known mathematical images--that of a dot moving around a circle; and that of the tens chart--and considers their power for developing mathematical thinking. In his opinion, these images each contain the essence of a particular topic of mathematics. They are contrasting images in the sense that they deal…
Descriptors: Geometric Concepts, Trigonometry, Mathematics Instruction, Mathematical Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Ecker, Michael W. – Mathematics and Computer Education, 2006
The author has always been fascinated by the title identity. It's charming and simple, as well as easy to believe after pressing a few calculator keys. Several fine proofs have appeared in the literature, including several proofs without words. His own earlier proof is trigonometric, and he has often been dissatisfied with not being able to…
Descriptors: Geometric Concepts, Geometry, Trigonometry, Problem Solving
Previous Page | Next Page ยป
Pages: 1  |  2