Publication Date
In 2025 | 2 |
Since 2024 | 9 |
Since 2021 (last 5 years) | 16 |
Since 2016 (last 10 years) | 24 |
Since 2006 (last 20 years) | 39 |
Descriptor
Error of Measurement | 48 |
Goodness of Fit | 48 |
Sample Size | 48 |
Factor Analysis | 18 |
Structural Equation Models | 18 |
Simulation | 17 |
Models | 15 |
Monte Carlo Methods | 14 |
Computation | 9 |
Evaluation Methods | 9 |
Item Response Theory | 9 |
More ▼ |
Source
Author
Chunhua Cao | 3 |
Shi, Dexin | 3 |
DiStefano, Christine | 2 |
Jiang, Zhehan | 2 |
Lomax, Richard G. | 2 |
Willse, John T. | 2 |
Xinya Liang | 2 |
Abad, Francisco J. | 1 |
Anderson, Ronald D. | 1 |
Auerswald, Max | 1 |
Benjamin Lugu | 1 |
More ▼ |
Publication Type
Journal Articles | 40 |
Reports - Research | 32 |
Reports - Evaluative | 10 |
Dissertations/Theses -… | 5 |
Speeches/Meeting Papers | 4 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Education Level
Adult Education | 1 |
Audience
Location
New Zealand | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Burt Word Reading Test | 1 |
Wechsler Intelligence Scale… | 1 |
What Works Clearinghouse Rating
Dexin Shi; Bo Zhang; Ren Liu; Zhehan Jiang – Educational and Psychological Measurement, 2024
Multiple imputation (MI) is one of the recommended techniques for handling missing data in ordinal factor analysis models. However, methods for computing MI-based fit indices under ordinal factor analysis models have yet to be developed. In this short note, we introduced the methods of using the standardized root mean squared residual (SRMR) and…
Descriptors: Goodness of Fit, Factor Analysis, Simulation, Accuracy
Suppanut Sriutaisuk; Yu Liu; Seungwon Chung; Hanjoe Kim; Fei Gu – Educational and Psychological Measurement, 2025
The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two…
Descriptors: Structural Equation Models, Error of Measurement, Programming Languages, Goodness of Fit
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Cross-loadings are common in multiple-factor confirmatory factor analysis (CFA) but often ignored in measurement invariance testing. This study examined the impact of ignoring cross-loadings on the sensitivity of fit measures (CFI, RMSEA, SRMR, SRMRu, AIC, BIC, SaBIC, LRT) to measurement noninvariance. The manipulated design factors included the…
Descriptors: Goodness of Fit, Error of Measurement, Sample Size, Factor Analysis
David Goretzko; Karik Siemund; Philipp Sterner – Educational and Psychological Measurement, 2024
Confirmatory factor analyses (CFA) are often used in psychological research when developing measurement models for psychological constructs. Evaluating CFA model fit can be quite challenging, as tests for exact model fit may focus on negligible deviances, while fit indices cannot be interpreted absolutely without specifying thresholds or cutoffs.…
Descriptors: Factor Analysis, Goodness of Fit, Psychological Studies, Measurement
Ting Dai; Yang Du; Jennifer Cromley; Tia Fechter; Frank Nelson – Journal of Experimental Education, 2024
Simple matrix sampling planned missing (SMS PD) design, introduce missing data patterns that lead to covariances between variables that are not jointly observed, and create difficulties for analyses other than mean and variance estimations. Based on prior research, we adopted a new multigroup confirmatory factor analysis (CFA) approach to handle…
Descriptors: Research Problems, Research Design, Data, Matrices
Christopher E. Shank – ProQuest LLC, 2024
This dissertation compares the performance of equivalence test (EQT) and null hypothesis test (NHT) procedures for identifying invariant and noninvariant factor loadings under a range of experimental manipulations. EQT is the statistically appropriate approach when the research goal is to find evidence of group similarity rather than group…
Descriptors: Factor Analysis, Goodness of Fit, Intervals, Comparative Analysis
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement
Hyunjung Lee; Heining Cham – Educational and Psychological Measurement, 2024
Determining the number of factors in exploratory factor analysis (EFA) is crucial because it affects the rest of the analysis and the conclusions of the study. Researchers have developed various methods for deciding the number of factors to retain in EFA, but this remains one of the most difficult decisions in the EFA. The purpose of this study is…
Descriptors: Factor Structure, Factor Analysis, Monte Carlo Methods, Goodness of Fit
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Exploratory structural equation modeling (ESEM) allows for the estimation of all cross-loadings, which leads to the number of parameters estimated substantially greater than that in conventional SEM. This study examined the sensitivity of fit measures (CFI, RMSEA, AIC, BIC, SaBIC, LRT) to measurement noninvariance in ESEM. Results suggested that…
Descriptors: Structural Equation Models, Error of Measurement, Computation, Goodness of Fit
Fatih Orçan – International Journal of Assessment Tools in Education, 2025
Factor analysis is a statistical method to explore the relationships among observed variables and identify latent structures. It is crucial in scale development and validity analysis. Key factors affecting the accuracy of factor analysis results include the type of data, sample size, and the number of response categories. While some studies…
Descriptors: Factor Analysis, Factor Structure, Item Response Theory, Sample Size
Silva Diaz, John Alexander; Köhler, Carmen; Hartig, Johannes – Applied Measurement in Education, 2022
Testing item fit is central in item response theory (IRT) modeling, since a good fit is necessary to draw valid inferences from estimated model parameters. "Infit" and "outfit" fit statistics, widespread indices for detecting deviations from the Rasch model, are affected by data factors, such as sample size. Consequently, the…
Descriptors: Intervals, Item Response Theory, Item Analysis, Inferences
Fu, Yuanshu; Wen, Zhonglin; Wang, Yang – Educational and Psychological Measurement, 2022
Composite reliability, or coefficient omega, can be estimated using structural equation modeling. Composite reliability is usually estimated under the basic independent clusters model of confirmatory factor analysis (ICM-CFA). However, due to the existence of cross-loadings, the model fit of the exploratory structural equation model (ESEM) is…
Descriptors: Comparative Analysis, Structural Equation Models, Factor Analysis, Reliability
Pavlov, Goran; Maydeu-Olivares, Alberto; Shi, Dexin – Educational and Psychological Measurement, 2021
We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides…
Descriptors: Structural Equation Models, Goodness of Fit, Simulation, Error of Measurement
Shi, Dexin; DiStefano, Christine; Zheng, Xiaying; Liu, Ren; Jiang, Zhehan – International Journal of Behavioral Development, 2021
This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML…
Descriptors: Growth Models, Maximum Likelihood Statistics, Factor Analysis, Sample Size
Jobst, Lisa J.; Auerswald, Max; Moshagen, Morten – Educational and Psychological Measurement, 2022
Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of…
Descriptors: Goodness of Fit, Structural Equation Models, Error of Measurement, Factor Analysis