Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 13 |
Since 2016 (last 10 years) | 21 |
Since 2006 (last 20 years) | 43 |
Descriptor
Goodness of Fit | 56 |
Sample Size | 56 |
Structural Equation Models | 56 |
Monte Carlo Methods | 21 |
Error of Measurement | 17 |
Factor Analysis | 17 |
Computation | 16 |
Statistical Analysis | 14 |
Simulation | 9 |
Estimation (Mathematics) | 8 |
Models | 8 |
More ▼ |
Source
Author
Fan, Xitao | 7 |
Chunhua Cao | 3 |
Boomsma, Anne | 2 |
Jackson, Dennis L. | 2 |
Lomax, Richard G. | 2 |
Maydeu-Olivares, Alberto | 2 |
Moshagen, Morten | 2 |
Shi, Dexin | 2 |
Sivo, Stephen A. | 2 |
Thompson, Bruce | 2 |
Wang, Lin | 2 |
More ▼ |
Publication Type
Journal Articles | 50 |
Reports - Research | 36 |
Reports - Evaluative | 14 |
Speeches/Meeting Papers | 6 |
Reports - Descriptive | 5 |
Information Analyses | 2 |
Guides - General | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 2 |
Audience
Location
Malaysia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Test of English as a Foreign… | 1 |
Woodcock Johnson Tests of… | 1 |
What Works Clearinghouse Rating
Suppanut Sriutaisuk; Yu Liu; Seungwon Chung; Hanjoe Kim; Fei Gu – Educational and Psychological Measurement, 2025
The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two…
Descriptors: Structural Equation Models, Error of Measurement, Programming Languages, Goodness of Fit
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Cross-loadings are common in multiple-factor confirmatory factor analysis (CFA) but often ignored in measurement invariance testing. This study examined the impact of ignoring cross-loadings on the sensitivity of fit measures (CFI, RMSEA, SRMR, SRMRu, AIC, BIC, SaBIC, LRT) to measurement noninvariance. The manipulated design factors included the…
Descriptors: Goodness of Fit, Error of Measurement, Sample Size, Factor Analysis
Chunhua Cao; Benjamin Lugu; Jujia Li – Structural Equation Modeling: A Multidisciplinary Journal, 2024
This study examined the false positive (FP) rates and sensitivity of Bayesian fit indices to structural misspecification in Bayesian structural equation modeling. The impact of measurement quality, sample size, model size, the magnitude of misspecified path effect, and the choice or prior on the performance of the fit indices was also…
Descriptors: Structural Equation Models, Bayesian Statistics, Measurement, Error of Measurement
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Exploratory structural equation modeling (ESEM) allows for the estimation of all cross-loadings, which leads to the number of parameters estimated substantially greater than that in conventional SEM. This study examined the sensitivity of fit measures (CFI, RMSEA, AIC, BIC, SaBIC, LRT) to measurement noninvariance in ESEM. Results suggested that…
Descriptors: Structural Equation Models, Error of Measurement, Computation, Goodness of Fit
van Laar, Saskia; Braeken, Johan – Practical Assessment, Research & Evaluation, 2021
Despite the sensitivity of fit indices to various model and data characteristics in structural equation modeling, these fit indices are used in a rigid binary fashion as a mere rule of thumb threshold value in a search for model adequacy. Here, we address the behavior and interpretation of the popular Comparative Fit Index (CFI) by stressing that…
Descriptors: Goodness of Fit, Structural Equation Models, Sampling, Sample Size
Fu, Yuanshu; Wen, Zhonglin; Wang, Yang – Educational and Psychological Measurement, 2022
Composite reliability, or coefficient omega, can be estimated using structural equation modeling. Composite reliability is usually estimated under the basic independent clusters model of confirmatory factor analysis (ICM-CFA). However, due to the existence of cross-loadings, the model fit of the exploratory structural equation model (ESEM) is…
Descriptors: Comparative Analysis, Structural Equation Models, Factor Analysis, Reliability
Haiyan Liu; Sarah Depaoli; Lydia Marvin – Structural Equation Modeling: A Multidisciplinary Journal, 2022
The deviance information criterion (DIC) is widely used to select the parsimonious, well-fitting model. We examined how priors impact model complexity (pD) and the DIC for Bayesian CFA. Study 1 compared the empirical distributions of pD and DIC under multivariate (i.e., inverse Wishart) and separation strategy (SS) priors. The former treats the…
Descriptors: Structural Equation Models, Bayesian Statistics, Goodness of Fit, Factor Analysis
Fatih Orcan – International Journal of Assessment Tools in Education, 2023
Among all, Cronbach's Alpha and McDonald's Omega are commonly used for reliability estimations. The alpha uses inter-item correlations while omega is based on a factor analysis result. This study uses simulated ordinal data sets to test whether the alpha and omega produce different estimates. Their performances were compared according to the…
Descriptors: Statistical Analysis, Monte Carlo Methods, Correlation, Factor Analysis
Cao, Chunhua; Kim, Eun Sook; Chen, Yi-Hsin; Ferron, John – Educational and Psychological Measurement, 2021
This study examined the impact of omitting covariates interaction effect on parameter estimates in multilevel multiple-indicator multiple-cause models as well as the sensitivity of fit indices to model misspecification when the between-level, within-level, or cross-level interaction effect was left out in the models. The parameter estimates…
Descriptors: Goodness of Fit, Hierarchical Linear Modeling, Computation, Models
Shi, Dexin; Lee, Taehun; Maydeu-Olivares, Alberto – Educational and Psychological Measurement, 2019
This study investigated the effect the number of observed variables (p) has on three structural equation modeling indices: the comparative fit index (CFI), the Tucker--Lewis index (TLI), and the root mean square error of approximation (RMSEA). The behaviors of the population fit indices and their sample estimates were compared under various…
Descriptors: Structural Equation Models, Goodness of Fit, Sample Size
Pavlov, Goran; Maydeu-Olivares, Alberto; Shi, Dexin – Educational and Psychological Measurement, 2021
We examine the accuracy of p values obtained using the asymptotic mean and variance (MV) correction to the distribution of the sample standardized root mean squared residual (SRMR) proposed by Maydeu-Olivares to assess the exact fit of SEM models. In a simulation study, we found that under normality, the MV-corrected SRMR statistic provides…
Descriptors: Structural Equation Models, Goodness of Fit, Simulation, Error of Measurement
Bang Quan Zheng; Peter M. Bentler – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Chi-square tests based on maximum likelihood (ML) estimation of covariance structures often incorrectly over-reject the null hypothesis: [sigma] = [sigma(theta)] when the sample size is small. Reweighted least squares (RLS) avoids this problem. In some models, the vector of parameter must contain means, variances, and covariances, yet whether RLS…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Goodness of Fit, Sample Size
Rai, Abha; Lee, Sunwoo; Jang, Jungwoo; Lee, Eunhye; Okech, David – Journal of Teaching in Social Work, 2022
The use of structural equation modeling (SEM) techniques in social work has increased over the last two decades. We therefore conducted a systematic review to understand the extent to which SEM is utilized in social work research, given that statistical training is now becoming a part of social work doctoral education. For our review, we utilized…
Descriptors: Structural Equation Models, Social Work, Social Science Research, Experiential Learning
Jobst, Lisa J.; Auerswald, Max; Moshagen, Morten – Educational and Psychological Measurement, 2022
Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of…
Descriptors: Goodness of Fit, Structural Equation Models, Error of Measurement, Factor Analysis
Önen, Emine – Universal Journal of Educational Research, 2019
This simulation study was conducted to compare the performances of Frequentist and Bayesian approaches in the context of power to detect model misspecification in terms of omitted cross-loading in CFA models with respect to the several variables (number of omitted cross-loading, magnitude of main loading, number of factors, number of indicators…
Descriptors: Factor Analysis, Bayesian Statistics, Comparative Analysis, Statistical Analysis