Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 7 |
Descriptor
Error of Measurement | 9 |
Goodness of Fit | 9 |
Statistical Inference | 9 |
Computation | 4 |
Structural Equation Models | 4 |
Maximum Likelihood Statistics | 3 |
Simulation | 3 |
Data Analysis | 2 |
Factor Analysis | 2 |
Hypothesis Testing | 2 |
Item Response Theory | 2 |
More ▼ |
Source
Grantee Submission | 2 |
Journal of Educational and… | 2 |
Educational and Psychological… | 1 |
Journal of Experimental… | 1 |
ProQuest LLC | 1 |
Structural Equation Modeling | 1 |
Author
Cai, Li | 2 |
Abad, Francisco J. | 1 |
Baek, Eunkyeng | 1 |
Browne, Michael W. | 1 |
Chung, Seungwon | 1 |
Enders, Craig K. | 1 |
Hau, Kit-Tai | 1 |
Henri, Maria | 1 |
Jorgensen, Terrence D. | 1 |
Lee, Taehun | 1 |
Lin, Johnny Cheng-Han | 1 |
More ▼ |
Publication Type
Journal Articles | 5 |
Reports - Research | 4 |
Reports - Descriptive | 3 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Reports - Evaluative | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
Program for International… | 1 |
What Works Clearinghouse Rating
Baek, Eunkyeng; Luo, Wen; Henri, Maria – Journal of Experimental Education, 2022
It is common to include multiple dependent variables (DVs) in single-case experimental design (SCED) meta-analyses. However, statistical issues associated with multiple DVs in the multilevel modeling approach (i.e., possible dependency of error, heterogeneous treatment effects, and heterogeneous error structures) have not been fully investigated.…
Descriptors: Meta Analysis, Hierarchical Linear Modeling, Comparative Analysis, Statistical Inference
Mansolf, Maxwell; Jorgensen, Terrence D.; Enders, Craig K. – Grantee Submission, 2020
Structural equation modeling (SEM) applications routinely employ a trilogy of significance tests that includes the likelihood ratio test, Wald test, and score test or modification index. Researchers use these tests to assess global model fit, evaluate whether individual estimates differ from zero, and identify potential sources of local misfit,…
Descriptors: Structural Equation Models, Computation, Scores, Simulation
Chung, Seungwon; Cai, Li – Grantee Submission, 2019
The use of item responses from questionnaire data is ubiquitous in social science research. One side effect of using such data is that researchers must often account for item level missingness. Multiple imputation (Rubin, 1987) is one of the most widely used missing data handling techniques. The traditional multiple imputation approach in…
Descriptors: Computation, Statistical Inference, Structural Equation Models, Goodness of Fit
Xi, Nuo; Browne, Michael W. – Journal of Educational and Behavioral Statistics, 2014
A promising "underlying bivariate normal" approach was proposed by Jöreskog and Moustaki for use in the factor analysis of ordinal data. This was a limited information approach that involved the maximization of a composite likelihood function. Its advantage over full-information maximum likelihood was that very much less computation was…
Descriptors: Factor Analysis, Maximum Likelihood Statistics, Data, Computation
Lee, Taehun; Cai, Li – Journal of Educational and Behavioral Statistics, 2012
Model-based multiple imputation has become an indispensable method in the educational and behavioral sciences. Mean and covariance structure models are often fitted to multiply imputed data sets. However, the presence of multiple random imputations complicates model fit testing, which is an important aspect of mean and covariance structure…
Descriptors: Statistical Inference, Structural Equation Models, Goodness of Fit, Statistical Analysis
Lin, Johnny Cheng-Han – ProQuest LLC, 2013
Many methods exist for imputing missing data but fewer methods have been proposed to test the missing data mechanism. Little (1988) introduced a multivariate chi-square test for the missing completely at random data mechanism (MCAR) that compares observed means for each pattern with expectation-maximization (EM) estimated means. As an alternative,…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Probability
Sueiro, Manuel J.; Abad, Francisco J. – Educational and Psychological Measurement, 2011
The distance between nonparametric and parametric item characteristic curves has been proposed as an index of goodness of fit in item response theory in the form of a root integrated squared error index. This article proposes to use the posterior distribution of the latent trait as the nonparametric model and compares the performance of an index…
Descriptors: Goodness of Fit, Item Response Theory, Nonparametric Statistics, Probability
Marsh, Herbert W.; Hau, Kit-Tai; Wen, Zhonglin – Structural Equation Modeling, 2004
Goodness-of-fit (GOF) indexes provide "rules of thumb"?recommended cutoff values for assessing fit in structural equation modeling. Hu and Bentler (1999) proposed a more rigorous approach to evaluating decision rules based on GOF indexes and, on this basis, proposed new and more stringent cutoff values for many indexes. This article discusses…
Descriptors: Statistical Significance, Structural Equation Models, Evaluation Methods, Evaluation Research
Olson, Jeffery E. – 1992
Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…
Descriptors: Error of Measurement, Factor Analysis, Goodness of Fit, Mathematical Models