Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 42 |
Since 2016 (last 10 years) | 108 |
Since 2006 (last 20 years) | 124 |
Descriptor
Source
Physics Education | 124 |
Author
Publication Type
Journal Articles | 124 |
Reports - Research | 60 |
Reports - Descriptive | 53 |
Reports - Evaluative | 11 |
Education Level
Higher Education | 35 |
Postsecondary Education | 29 |
Secondary Education | 27 |
High Schools | 16 |
Junior High Schools | 3 |
Middle Schools | 3 |
Elementary Secondary Education | 2 |
Elementary Education | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
Grade 9 | 1 |
More ▼ |
Audience
Teachers | 11 |
Location
Brazil | 2 |
Germany | 2 |
United Kingdom | 2 |
Australia | 1 |
Finland | 1 |
Greece | 1 |
Greece (Athens) | 1 |
New York (New York) | 1 |
Norway | 1 |
Taiwan | 1 |
Uruguay | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Mayer, V. V.; Varaksina, E. I. – Physics Education, 2022
We propose a laboratory experiment on the quantitative study of the normal dispersion of light. A triangular isosceles prism made of flint glass TF3 is used as the object of study, and we describe a simple and affordable device for observing and photographing the dispersion spectrum on a smartphone. A possibility of the quantitative investigation…
Descriptors: Light, Physics, Science Experiments, Science Instruction
Ait Ben Ahmed, A.; Touache, A.; El Hakimi, A.; Chamat, A. – Physics Education, 2021
Studying the dynamics of beams is considered an indispensable field for mechanical and civil engineering students. This paper describes, in detail, the use of smartphones in educational practical works to determine and examine the dynamic characteristics of beams subjected to free vibration. Where the smartphone is equipped with a mobile…
Descriptors: Scientific Concepts, Physics, Handheld Devices, Science Experiments
Vidak, Andrej; Sapic, Iva Movre; Mesic, Vanes – Physics Education, 2021
The experimental investigation of Newton's law of universal gravitation requires expensive and sensitive equipment. Therefore, it is often not possible to conduct such an experiment within a typical physics class. An alternative is to investigate the universal gravitation law by using simulations. In this paper, we are presenting such an augmented…
Descriptors: Computer Simulation, Teaching Methods, Physics, Scientific Concepts
Pusch, Alexander; Ubben, Malte S.; Laumann, Daniel; Heinicke, Susanne; Heusler, Stefan – Physics Education, 2021
An easy circuit for measuring the power of a solar panel in physics classroom by using the microcontroller Arduino will be introduced in this article. The measured data is transferred via Bluetooth to the smartphone app 'phyphox' where it is displayed graphically. The circuitry enables measuring the power of a solar panel in different situations…
Descriptors: Physics, Science Education, Light, Science Experiments
Baird, William H. – Physics Education, 2022
The United States' Global Positioning System (GPS), and similar geolocation systems such as Galileo, GLONASS, and Beidou are used by people all over the globe. Modern receivers of these global navigation satellite systems can track multiple satellites from different constellations. Casual, non-technical users are probably aware that the positional…
Descriptors: Physics, Geographic Information Systems, Navigation (Information Systems), Handheld Devices
Koblischka, Michael R.; Koblischka-Veneva, Anjela – Physics Education, 2022
Several properties of Earth's magnetic field (field vectors, time dependence) are measured in various locations using a smartphone/tablet magnetic sensor. To enable a proper use of the magnetic sensor as a classroom tool, the exact location of the sensor in the device and its resolution must be identified in a first step. Then, students may…
Descriptors: High School Students, Physics, Science Curriculum, Experiments
Williams, Hollis – Physics Education, 2022
Granular flows appear frequently in the natural world and in civil engineering applications. These flows can exhibit features which are surprising and counter-intuitive and are often used to test the limits of the classical continuum approximation for modelling of fluid flows. An important sub-class of the granular flows are the gravity-driven…
Descriptors: Science Instruction, Physics, Scientific Concepts, Educational Technology
Soares, A. A.; Cantão, R. F.; Pinheiro, J. B., Jr.; Castro, F. G. – Physics Education, 2022
We present an experiment designed to study standing waves in a tube with one closed end. Two smartphones are used, one to emit a sound signal with a chosen frequency and another equipped with a microphone to detect the sound pressure level inside the tube. Due to the finite diameter of the tube, the standing wave node (or antinode) appears…
Descriptors: Science Instruction, Science Experiments, Telecommunications, Handheld Devices
Chatchawaltheerat, Theerawat; Khemmani, Supitch; Puttharugsa, Chokchai – Physics Education, 2021
This paper demonstrates the use of a smartphone's sensors in recording experimental data for investigating the large angle of a physical pendulum. The smartphone (iPhone 5s) was attached to a beam to record simultaneously both the angular position and the angular speed of the beam oscillating about the pivot. The period and phase space of the…
Descriptors: Telecommunications, Handheld Devices, Physics, Science Instruction
Monteiro, Martín; Stari, Cecilia; Cabeza, Cecilia; Martí, Arturo C. – Physics Education, 2022
The flight of a quadcopter drone, readily available as a toy, is analyzed using simple physics concepts. A smartphone with built-in accelerometer and gyroscope was attached to the drone to register the accelerations and angular velocities along the three spatial axis while the drone is taking off, landing or rotating. The vertical speed, the…
Descriptors: Physics, Science Instruction, Scientific Concepts, Concept Formation
Listiaji, Prasetyo – Physics Education, 2022
The current pandemic era demands distance learning, including physics experiments on the topic of optics. One of the optical phenomena that needs to be explained in optic courses is fluorescence. This study offers a simple home experiment regarding the application of fluorescence, namely to identify the purity of olive oil using simple…
Descriptors: Science Instruction, Science Experiments, Physics, Optics
Hughes, Stephen; Croxford, Tim – Physics Education, 2022
The first of the two postulates of relativity states that the laws of physics are the same in all inertial reference frames. Often it is assumed that the postulates are mainly concerned with objects moving at a significant fraction of the speed of light. However, the postulates are applicable at all speeds from a snail to a photon. To practically…
Descriptors: Physics, Science Instruction, Teaching Methods, Telecommunications
Herrera-Suárez, H. J.; Morales-Aranguren, H. L.; Muñoz, J. H.; Ossa-Novoa, J. – Physics Education, 2022
The oscillations of one mass "m" suspended between two different springs, assuming a friction force proportional to the velocity [minuscule], have been studied. For this purpose, an assembly for this system has been made. The movement of the mass is recorded with a smartphone and analysed with "Tracker." It is obtained that the…
Descriptors: Mechanics (Physics), Motion, Energy, Science Instruction
Goev, Gosho; Velinov, Tzvetan – Physics Education, 2022
In this paper, we propose a simple yet generic and versatile method to measure the position of a moving body as a function of time. Apart from very basic equipment such as carts and wheels, only a laser pointer or a similar device and a smartphone are necessary. By attaching a source of light to a cart and video filming its movement on a…
Descriptors: Measurement Techniques, Science Instruction, Motion, Physics
Wye, Steven – Physics Education, 2023
During the COVID-19 pandemic and subsequent lockdown, both schools and universities faced significant challenges in moving teaching from an in-situ setting to a remote one, this included laboratory experiments. This paper presents an experiment developed to use a phone's in built pressure sensor, common to most smart phones. By using this sensor…
Descriptors: COVID-19, Pandemics, School Closing, Science Instruction