Publication Date
In 2025 | 0 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 2 |
Since 2016 (last 10 years) | 6 |
Since 2006 (last 20 years) | 13 |
Descriptor
Hands on Science | 18 |
Models | 18 |
Science Experiments | 14 |
Science Instruction | 10 |
Scientific Concepts | 8 |
Laboratory Experiments | 6 |
Teaching Methods | 6 |
Chemistry | 5 |
Science Education | 5 |
College Science | 4 |
Inquiry | 4 |
More ▼ |
Source
Author
Bogner, Franz X. | 2 |
Amarne, Hazem Y. | 1 |
Angie E. Xu | 1 |
AungYong, Lisa | 1 |
Bain, Alex D. | 1 |
Baker, William P. | 1 |
Brian J. Esselman | 1 |
Cara E. Schwarz | 1 |
Chang, Hong-Ming | 1 |
Chen, Kai-Ping | 1 |
Fedor, Anna M. | 1 |
More ▼ |
Publication Type
Journal Articles | 15 |
Reports - Descriptive | 9 |
Reports - Research | 5 |
Guides - Classroom - Teacher | 3 |
Books | 1 |
Guides - Classroom - Learner | 1 |
Reports - Evaluative | 1 |
Tests/Questionnaires | 1 |
Education Level
Audience
Teachers | 2 |
Practitioners | 1 |
Students | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Philip P. Lampkin; Angie E. Xu; Brian J. Esselman; Cara E. Schwarz; Sebastian D. Thompson; Samuel H. Gellman; Nicholas J. Hill – Journal of Chemical Education, 2024
Synthesis of (Z)-alkenes is challenging because the (E) stereoisomers are usually more stable. Energy transfer photocatalysis has emerged as an efficient strategy for (E) [right arrow] (Z) alkene isomerization. We report the development of an advanced undergraduate laboratory experiment that introduces students to contemporary organic…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Synthesis
Wong, Wing-Kwong; Chen, Kai-Ping; Chang, Hong-Ming – Journal of Baltic Science Education, 2020
This research aimed to explore the effects of a virtual lab (VL) and a Microcomputer-based Lab (MBL) on students' performance in scientific modeling. A web-based virtual lab and a low-cost MBL were proposed to help first-year engineering students build scientific models. Empirical research was done in a slope motion experiment. The participants…
Descriptors: Foreign Countries, Science Laboratories, Computer Simulation, Educational Technology
Mierdel, Julia; Bogner, Franz X. – Research in Science Education, 2021
Genetics is known to be one of the most challenging subjects in biology education because of its abstract concepts and processes. Therefore, hands-on experiments in authentic learning environments are supposed to increase comprehensibility and provide otherwise unavailable experiences to students. We applied a hands-on module in an out-of-school…
Descriptors: Genetics, Hands on Science, Science Experiments, Authentic Learning
Thornburgh, William; McFadden, Justin; Robinson, Brian – Science and Children, 2020
The "Next Generation Science Standards" ("NGSS") have placed an emphasis on the incorporation of engineering practices into K-12 science instruction. This article details a sequence of physical science lessons that would be part of teaching matter in the second-grade classroom. The goals of these lessons are: (1) to be hands-on…
Descriptors: Standards, Science Education, Engineering Education, Grade 2
Meyer, Scott C. – Journal of Chemical Education, 2015
An upper-division undergraduate laboratory experiment is described that explores the structure/function relationship of protein domains, namely leucine zippers, through a molecular graphics computer program and physical models fabricated by 3D printing. By generating solvent accessible surfaces and color-coding hydrophobic, basic, and acidic amino…
Descriptors: College Science, Undergraduate Study, Science Laboratories, Science Experiments
Hare, Stephanie R.; Tantillo, Dean J. – Journal of Chemical Education, 2017
When new concepts, models, or theories are introduced in a course, their presentation should be accurate, even if depth is not the goal. In a recent publication in this Journal, the Woodward-Hoffmann rules were invoked in the context of a new laboratory experiment, but the associated description was inaccurate. Here we aim to clarify the…
Descriptors: Chemistry, Organic Chemistry, Laboratory Experiments, Science Instruction
Mendez, Sergio; AungYong, Lisa – Chemical Engineering Education, 2014
To help students make the connection between the concepts of heat conduction and convection to real-world phenomenon, we developed a combined experimental and computational module that can be incorporated into lecture or lab courses. The experimental system we present requires materials and apparatus that are readily accessible, and the procedure…
Descriptors: Heat, Thermodynamics, Scientific Concepts, Science Education
Hitt, Austin Manning; Townsend, J. Scott – Science Activities: Classroom Projects and Curriculum Ideas, 2015
Elementary, middle-level, and high school science teachers commonly find their students have misconceptions about heat and temperature. Unfortunately, student misconceptions are difficult to modify or change and can prevent students from learning the accurate scientific explanation. In order to improve our students' understanding of heat and…
Descriptors: Science Instruction, Scientific Concepts, Misconceptions, Heat
Fedor, Anna M.; Toda, Megan J. – Journal of Chemical Education, 2014
The hydrogen bonding of phenol can be used as an introductory model for biological systems because of its structural similarities to tyrosine, a para-substituted phenol that is an amino acid essential to the synthesis of proteins. Phenol is able to form hydrogen bonds readily in solution, which makes it a suitable model for biological…
Descriptors: Spectroscopy, Chemistry, Science Education, Investigations
Soulios, Ioannis; Psillos, Dimitris – International Journal of Science Education, 2016
In this study we present the structure and implementation of a model-based inquiry teaching-learning sequence (TLS) integrating expressive, experimental and exploratory modelling pedagogies in a cyclic manner, with the aim of enhancing primary education student teachers' epistemological beliefs about the aspects, nature, purpose and change of…
Descriptors: Student Teachers, Epistemology, Beliefs, Inquiry
Sturm, Heike; Sturm, Gerd; Bogner, Franz X. – World Journal of Education, 2011
Bird flight and lift in general is a complex subject which is also difficult to teach in a classroom. In order to support the teaching of this curriculum-based subject, an interactive exhibit to demonstrate aerodynamic aspects of objects has been developed, implemented and evaluated with 262 middle school students. The empirical evaluation…
Descriptors: Models, Exhibits, Middle School Students, Semantic Differential
Amarne, Hazem Y.; Bain, Alex D.; Neumann, Karen; Zelisko, Paul M. – Journal of Chemical Education, 2008
We describe an extended third-year undergraduate chemistry laboratory exercise in which a number of techniques and concepts are applied to the same set of chemical reactions. The reactions are the photochemical and thermal cycloadditions of [beta]-nitrostyrene and 2,3-dimethylbutadiene. This can be viewed as a single long lab or a series of…
Descriptors: Research Methodology, Chemistry, Laboratory Experiments, College Science
Montgomery, Craig D. – Journal of Chemical Education, 2007
An exercise is described that has illustrated the effect of various factors on [pi] backbonding to carbonyl ligands, where the students can view the molecular orbitals corresponding to the M-CO [pi] interaction as well as the competing interaction between the metal and co-ligands. The visual and hands-on nature of the modeling exercise has helped…
Descriptors: Teaching Methods, Interaction, Chemistry, Science Experiments
Baker, William P.; Moore, Cathy R. – 1996
Understanding of immunological techniques such as the Enzyme Linked Immuno Sorbent Assay (ELISA) is an important part of instructional units in human health, developmental biology, microbiology, and biotechnology. This paper describes a simple ELISA exercise for undergraduate biology that effectively simulates the technique using a paper model.…
Descriptors: Biology, College Science, Enzymes, Hands on Science

Ringlein, James – Science Teacher, 2005
Violins, earthquakes, and the "singing rod" demonstration all have something in common--stick-slip frictional motion. The application of stick-slip friction can be extended to a ringing wineglass, exotic percussion instruments, car racing, and the latest research on the interplay between surfaces at the atomic level. These examples all involve two…
Descriptors: Motion, Physics, Demonstrations (Educational), Science Experiments
Previous Page | Next Page ยป
Pages: 1 | 2