ERIC Number: EJ1444279
Record Type: Journal
Publication Date: 2023-Jul
Pages: 9
Abstractor: As Provided
ISBN: N/A
ISSN: ISSN-0021-9584
EISSN: EISSN-1938-1328
Available Date: N/A
Organic Semiconductor Nanoparticle Synthesis and Characterization for Printed Electronics Applications: An Undergraduate Laboratory
Justine Bull; Sophie Cottam; Isaac A. Gill; Paul C. Dastoor; Natalie P. Holmes
Journal of Chemical Education, v100 n7 p2724-2732 2023
Here we showcase an undergraduate teaching laboratory in which students synthesize and characterize colloidal nanoparticles of organic semiconductors and assess their suitability for applications in printed electronics such as solar cells and bioelectronics. Scanning electron microscopy, UV-visible spectroscopy, and photoluminescence spectroscopy are used to characterize the nanoparticles, and students learn how to match electron donating (p-type) and electron accepting (n-type) materials based on the literature material characteristics: HOMO, LUMO, and charge carrier mobility. This teaching laboratory exercise was developed as part of the University of Newcastle Centre for Organic Electronics Spring School program and includes data from a cohort of 44 undergraduate student participants. The teaching laboratory exercise is applicable to undergraduate students in multiple disciplines, including physical chemistry, chemical engineering, materials science, and physics, and can be altered to suit time, level of experience, and instrumentation availability. The exercise utilizes a post-practical quiz to provide feedback and assess embedded knowledge. The student cohort responded well to the post-practical quiz, for example, 94% correctly identified the purpose of synthesizing nanoparticles of organic semiconductors for printed electronics applications being eco-friendly high-throughput processing benefits as well as the ability to nanostructure the photoactive layer to optimize exciton dissociation. This Laboratory Experiment also provides a set of Student Learning Objectives (LOs) and a detailed account of observations/outcomes in attaining these LOs for the student cohort at the Spring School program. This experiment is an introductory lesson in colloidal nanomaterials and gives students exposure to the chemistry, physics, and materials science concepts of organic electronics.
Descriptors: Foreign Countries, Undergraduate Students, Chemistry, Science Instruction, Laboratory Experiments, Hands on Science, Organic Chemistry, Spectroscopy
Division of Chemical Education, Inc. and ACS Publications Division of the American Chemical Society. 1155 Sixteenth Street NW, Washington, DC 20036. Tel: 800-227-5558; Tel: 202-872-4600; e-mail: eic@jce.acs.org; Web site: http://pubs.acs.org/jchemeduc
Publication Type: Journal Articles; Reports - Research
Education Level: Higher Education; Postsecondary Education
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Identifiers - Location: United Kingdom (Newcastle upon Tyne)
Grant or Contract Numbers: N/A
Author Affiliations: N/A