NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Fridah Rotich; Lyniesha Ward; Carly Beck; Maia Popova – Chemistry Education Research and Practice, 2024
Despite representations' central role in conveying chemical phenomena, mastering them is not trivial, given the wide variety of different conventions to interpret and use them. Furthermore, instructional approaches and materials may overlook explicit discussion on how students should reason with representations. To gather evidence that could guide…
Descriptors: Organic Chemistry, Thinking Skills, Scientific Concepts, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Parobek, Alexander P.; Chaffin, Patrick M.; Towns, Marcy H. – Chemistry Education Research and Practice, 2021
Reaction coordinate diagrams (RCDs) are chemical representations widely employed to visualize the thermodynamic and kinetic parameters associated with reactions. Previous research has demonstrated a host of misconceptions students adopt when interpreting the perceived information encoded in RCDs. This qualitative research study explores how…
Descriptors: Visual Aids, Chemistry, Inferences, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Connor, Megan C.; Finkenstaedt-Quinn, Solaire A.; Shultz, Ginger V. – Chemistry Education Research and Practice, 2019
Promoting students' ability to engage in discipline-specific practices is a central goal of chemistry education. Yet if instruction is to meaningfully foster such ability, we must first understand students' reasoning during these practices. By characterizing constraints on chemistry students' reasoning, we can design instruction that targets this…
Descriptors: Science Instruction, Organic Chemistry, College Science, Logical Thinking
Peer reviewed Peer reviewed
Direct linkDirect link
Muniz, Marc N.; Crickmore, Cassidy; Kirsch, Joshua; Beck, Jordan P. – Chemistry Education Research and Practice, 2018
Chemical processes can be fully explained only by employing quantum mechanical models. These models are abstract and require navigation of a variety of cognitively taxing representations. Published research about how students use quantum mechanical models at the upper-division level is sparse. Through a mixed-methods study involving think-aloud…
Descriptors: Advanced Courses, Chemistry, Science Instruction, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Stephenson, N. S.; Sadler-McKnight, N. P. – Chemistry Education Research and Practice, 2016
The Science Writing Heuristic (SWH) laboratory approach is a teaching and learning tool which combines writing, inquiry, collaboration and reflection, and provides scaffolding for the development of critical thinking skills. In this study, the California Critical Thinking Skills Test (CCTST) was used to measure the critical thinking skills of…
Descriptors: Critical Thinking, Thinking Skills, Skill Development, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Shamuganathana, Sheila; Karpudewan, Mageswary – Chemistry Education Research and Practice, 2017
Existing studies report on the importance of instilling environmental literacy among students from an early stage of schooling to enable them to adopt more pro-environmental behaviors in the near future. This quasi-experimental study was designed to compare the level of environmental literacy among two groups of students: the experimental group (N…
Descriptors: Secondary School Students, Secondary School Science, Environmental Education, Scientific Literacy
Peer reviewed Peer reviewed
Direct linkDirect link
Graulich, Nicole; Tiemann, Rudiger; Schreiner, Peter R. – Chemistry Education Research and Practice, 2012
We investigate the efficiency of domain-specific heuristic strategies in mastering and predicting pericyclic six-electron rearrangements. Based on recent research findings on these types of reactions a new concept has been developed that should help students identify and describe six-electron rearrangements more readily in complex molecules. The…
Descriptors: Organic Chemistry, Heuristics, College Science, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Kingir, Sevgi; Geban, Omer; Gunel, Murat – Chemistry Education Research and Practice, 2012
This study investigates the effects of the Science Writing Heuristic (SWH), known as an argumentation-based science inquiry approach, on Grade 9 students' performance on a post-test in relation to their academic achievement levels. Four intact classes taught by 2 chemistry teachers from a Turkish public high school were selected for the study; one…
Descriptors: Academic Achievement, Program Effectiveness, Chemistry, Heuristics
Peer reviewed Peer reviewed
Direct linkDirect link
Madden, Sean P.; Jones, Loretta L.; Rahm, Jrene – Chemistry Education Research and Practice, 2011
This study examined the representational competence of students as they solved problems dealing with the temperature-pressure relationship for ideal gases. Seven students enrolled in a first-semester general chemistry course and two advanced undergraduate science majors participated in the study. The written work and transcripts from videotaped…
Descriptors: Teaching Methods, Advanced Students, Heuristics, Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Schroeder, Jacob D.; Greenbowe, Thomas J. – Chemistry Education Research and Practice, 2008
This study investigated the possible connection between effective laboratory activities and student performance on lecture exams. In a traditional undergraduate organic chemistry course for non-science majors, students could predict the products of organic reactions, but struggled to provide reaction mechanisms for those same reactions, despite…
Descriptors: Nonmajors, Student Attitudes, Heuristics, Organic Chemistry