Publication Date
In 2025 | 2 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 20 |
Since 2016 (last 10 years) | 47 |
Since 2006 (last 20 years) | 65 |
Descriptor
Bayesian Statistics | 66 |
Hierarchical Linear Modeling | 66 |
Computation | 22 |
Statistical Analysis | 19 |
Regression (Statistics) | 15 |
Comparative Analysis | 13 |
Maximum Likelihood Statistics | 13 |
Monte Carlo Methods | 12 |
Statistical Inference | 11 |
Academic Achievement | 10 |
Foreign Countries | 10 |
More ▼ |
Source
Author
Levy, Roy | 3 |
Andrew Gelman | 2 |
Baek, Eunkyeng | 2 |
Beretvas, S. Natasha | 2 |
Chung, Yeojin | 2 |
Craig K. Enders | 2 |
Dorie, Vincent | 2 |
Enders, Craig K. | 2 |
Finch, W. Holmes | 2 |
Fox, Jean-Paul | 2 |
Gelman, Andrew | 2 |
More ▼ |
Publication Type
Reports - Research | 57 |
Journal Articles | 45 |
Reports - Descriptive | 5 |
Dissertations/Theses -… | 2 |
Reports - Evaluative | 2 |
Speeches/Meeting Papers | 2 |
Information Analyses | 1 |
Numerical/Quantitative Data | 1 |
Education Level
Audience
Location
Pennsylvania | 3 |
Australia | 2 |
Ethiopia | 1 |
Germany | 1 |
Indiana | 1 |
New Zealand | 1 |
South Korea | 1 |
Taiwan | 1 |
Texas | 1 |
United Kingdom (England) | 1 |
Washington | 1 |
More ▼ |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
Trends in International… | 2 |
Early Childhood Longitudinal… | 1 |
Indiana Statewide Testing for… | 1 |
Iowa Tests of Basic Skills | 1 |
National Assessment of… | 1 |
Program for International… | 1 |
Students Evaluation of… | 1 |
What Works Clearinghouse Rating
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Brian T. Keller; Craig K. Enders – Grantee Submission, 2023
A growing body of literature has focused on missing data methods that factorize the joint distribution into a part representing the analysis model of interest and a part representing the distributions of the incomplete predictors. Relatively little is known about the utility of this method for multilevel models with interactive effects. This study…
Descriptors: Data Analysis, Hierarchical Linear Modeling, Monte Carlo Methods, Bias
Mangino, Anthony A.; Finch, W. Holmes – Educational and Psychological Measurement, 2021
Oftentimes in many fields of the social and natural sciences, data are obtained within a nested structure (e.g., students within schools). To effectively analyze data with such a structure, multilevel models are frequently employed. The present study utilizes a Monte Carlo simulation to compare several novel multilevel classification algorithms…
Descriptors: Prediction, Hierarchical Linear Modeling, Classification, Bayesian Statistics
Mingya Huang; David Kaplan – Journal of Educational and Behavioral Statistics, 2025
The issue of model uncertainty has been gaining interest in education and the social sciences community over the years, and the dominant methods for handling model uncertainty are based on Bayesian inference, particularly, Bayesian model averaging. However, Bayesian model averaging assumes that the true data-generating model is within the…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Statistical Inference, Predictor Variables
Kara, Yusuf; Kamata, Akihito – Journal of Experimental Education, 2022
Within-cluster variance homogeneity is one of the key assumptions of multilevel models; however, assuming a constant (i.e. equal) within-cluster variance may not be realistic. Moreover, existent within-cluster variance heterogeneity should be regarded as a source of additional information rather than a violation of a model assumption. This study…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Item Response Theory, Multivariate Analysis
Andrew Gelman; Matthijs Vákár – Grantee Submission, 2021
It is not always clear how to adjust for control data in causal inference, balancing the goals of reducing bias and variance. We show how, in a setting with repeated experiments, Bayesian hierarchical modeling yields an adaptive procedure that uses the data to determine how much adjustment to perform. The result is a novel analysis with increased…
Descriptors: Bayesian Statistics, Statistical Analysis, Efficiency, Statistical Inference
Han Du; Brian Keller; Egamaria Alacam; Craig Enders – Grantee Submission, 2023
In Bayesian statistics, the most widely used criteria of Bayesian model assessment and comparison are Deviance Information Criterion (DIC) and Watanabe-Akaike Information Criterion (WAIC). A multilevel mediation model is used as an illustrative example to compare different types of DIC and WAIC. More specifically, the study compares the…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Probability
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Martinková, Patrícia; Bartoš, František; Brabec, Marek – Journal of Educational and Behavioral Statistics, 2023
Inter-rater reliability (IRR), which is a prerequisite of high-quality ratings and assessments, may be affected by contextual variables, such as the rater's or ratee's gender, major, or experience. Identification of such heterogeneity sources in IRR is important for the implementation of policies with the potential to decrease measurement error…
Descriptors: Interrater Reliability, Bayesian Statistics, Statistical Inference, Hierarchical Linear Modeling

Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Qi, Xinyue; Zhou, Shouhao; Wang, Yucai; Peterson, Christine – Research Synthesis Methods, 2022
Meta-analysis allows researchers to combine evidence from multiple studies, making it a powerful tool for synthesizing information on the safety profiles of new medical interventions. There is a critical need to identify subgroups at high risk of experiencing treatment-related toxicities. However, this remains quite challenging from a statistical…
Descriptors: Bayesian Statistics, Identification, Meta Analysis, Data Analysis
Fox, Jean-Paul; Wenzel, Jeremias; Klotzke, Konrad – Journal of Educational and Behavioral Statistics, 2021
Standard item response theory (IRT) models have been extended with testlet effects to account for the nesting of items; these are well known as (Bayesian) testlet models or random effect models for testlets. The testlet modeling framework has several disadvantages. A sufficient number of testlet items are needed to estimate testlet effects, and a…
Descriptors: Bayesian Statistics, Tests, Item Response Theory, Hierarchical Linear Modeling
Liu, Yixing; Levy, Roy; Yel, Nedim; Schulte, Ann C. – School Effectiveness and School Improvement, 2023
Although there is recognition that there may be differential outcomes for groups of students within schools, examination of outcomes for subgroups presents challenges to researchers and policymakers. It complicates analytic procedures, particularly when the number of students per school in the subgroup is small. We explored five alternatives for…
Descriptors: Growth Models, Hierarchical Linear Modeling, School Effectiveness, Academic Achievement
Craig K. Enders – Grantee Submission, 2023
The year 2022 is the 20th anniversary of Joseph Schafer and John Graham's paper titled "Missing data: Our view of the state of the art," currently the most highly cited paper in the history of "Psychological Methods." Much has changed since 2002, as missing data methodologies have continually evolved and improved; the range of…
Descriptors: Data, Research, Theories, Regression (Statistics)
Dietz, Patricia M.; Rose, Charles E.; McArthur, Dedria; Maenner, Matthew – Journal of Autism and Developmental Disorders, 2020
U.S. national and state population-based estimates of adults living with autism spectrum disorder (ASD) are nonexistent due to the lack of existing surveillance systems funded to address this need. Therefore, we estimated national and state prevalence of adults 18-84 years living with ASD using simulation in conjunction with Bayesian hierarchal…
Descriptors: Adults, Autism, Pervasive Developmental Disorders, Incidence