NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Race to the Top1
What Works Clearinghouse Rating
Showing 1 to 15 of 53 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Francis L. Huang – Large-scale Assessments in Education, 2024
The use of large-scale assessments (LSAs) in education has grown in the past decade though analysis of LSAs using multilevel models (MLMs) using R has been limited. A reason for its limited use may be due to the complexity of incorporating both plausible values and weighted analyses in the multilevel analyses of LSA data. We provide additional…
Descriptors: Hierarchical Linear Modeling, Evaluation Methods, Educational Assessment, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Johan Lyrvall; Zsuzsa Bakk; Jennifer Oser; Roberto Di Mari – Structural Equation Modeling: A Multidisciplinary Journal, 2024
We present a bias-adjusted three-step estimation approach for multilevel latent class models (LC) with covariates. The proposed approach involves (1) fitting a single-level measurement model while ignoring the multilevel structure, (2) assigning units to latent classes, and (3) fitting the multilevel model with the covariates while controlling for…
Descriptors: Hierarchical Linear Modeling, Statistical Bias, Error of Measurement, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Tong Wu; Stella Y. Kim; Carl Westine; Michelle Boyer – Journal of Educational Measurement, 2025
While significant attention has been given to test equating to ensure score comparability, limited research has explored equating methods for rater-mediated assessments, where human raters inherently introduce error. If not properly addressed, these errors can undermine score interchangeability and test validity. This study proposes an equating…
Descriptors: Item Response Theory, Evaluators, Error of Measurement, Test Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Daniel McNeish; Patrick D. Manapat – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A recent review found that 11% of published factor models are hierarchical models with second-order factors. However, dedicated recommendations for evaluating hierarchical model fit have yet to emerge. Traditional benchmarks like RMSEA <0.06 or CFI >0.95 are often consulted, but they were never intended to generalize to hierarchical models.…
Descriptors: Factor Analysis, Goodness of Fit, Hierarchical Linear Modeling, Benchmarking
Peer reviewed Peer reviewed
Direct linkDirect link
Mingya Huang; David Kaplan – Journal of Educational and Behavioral Statistics, 2025
The issue of model uncertainty has been gaining interest in education and the social sciences community over the years, and the dominant methods for handling model uncertainty are based on Bayesian inference, particularly, Bayesian model averaging. However, Bayesian model averaging assumes that the true data-generating model is within the…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Statistical Inference, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Carmen Köhler; Lale Khorramdel; Artur Pokropek; Johannes Hartig – Journal of Educational Measurement, 2024
For assessment scales applied to different groups (e.g., students from different states; patients in different countries), multigroup differential item functioning (MG-DIF) needs to be evaluated in order to ensure that respondents with the same trait level but from different groups have equal response probabilities on a particular item. The…
Descriptors: Measures (Individuals), Test Bias, Models, Item Response Theory
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Jiaqi Jackie Shi – ProQuest LLC, 2024
One of the many impacts of the COVID-19 pandemic has been the increasing prevalence and accessibility of online education. This trend has also introduced challenges for students, instructors, and institutions. This study examines factors affecting online course satisfaction, focusing on individual, instructor, and institutional level…
Descriptors: Prediction, Online Courses, Higher Education, Student Attitudes
Karen Blackburn Hoeve – ProQuest LLC, 2021
High stakes test-based accountability systems primarily rely on aggregates and derivatives of scores from tests that were originally developed to measure individual student mastery of content specifications. Current validity models do not explicitly address this use of aggregate scores to measure the performance of teachers, administrators, and…
Descriptors: Accountability, Test Validity, High Stakes Tests, Hierarchical Linear Modeling
Kelvin Terrell Pompey – ProQuest LLC, 2021
Many methods are used to measure interrater reliability for studies where each target receives ratings by a different set of judges. The purpose of this study is to explore the use of hierarchical modeling for estimating interrater reliability using the intraclass correlation coefficient. This study provides a description of how the ICC can be…
Descriptors: Interrater Reliability, Evaluation Methods, Test Reliability, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Stephen M. Leach; Jason C. Immekus; Jeffrey C. Valentine; Prathiba Batley; Dena Dossett; Tamara Lewis; Thomas Reece – Assessment for Effective Intervention, 2025
Educators commonly use school climate survey scores to inform and evaluate interventions for equitably improving learning and reducing educational disparities. Unfortunately, validity evidence to support these (and other) score uses often falls short. In response, Whitehouse et al. proposed a collaborative, two-part validity testing framework for…
Descriptors: School Surveys, Measurement, Hierarchical Linear Modeling, Educational Environment
Lydia Bradford – ProQuest LLC, 2024
In randomized control trials (RCT), the recent focus has shifted to how an intervention yields positive results on its intended outcome. This aligns with the recent push of implementation science in healthcare (Bauer et al., 2015) but goes beyond this. RCTs have moved to evaluating the theoretical framing of the intervention as well as differing…
Descriptors: Hierarchical Linear Modeling, Mediation Theory, Randomized Controlled Trials, Research Design
Reardon, Sean F.; Ho, Andrew D.; Kalogrides, Demetra – Stanford Center for Education Policy Analysis, 2019
Linking score scales across different tests is considered speculative and fraught, even at the aggregate level (Feuer et al., 1999; Thissen, 2007). We introduce and illustrate validation methods for aggregate linkages, using the challenge of linking U.S. school district average test scores across states as a motivating example. We show that…
Descriptors: Test Validity, Evaluation Methods, School Districts, Scores
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Peralta, Yadira; Moreno, Mario; Harwell, Michael; Guzey, S. Selcen; Moore, Tamara J. – Educational Research Quarterly, 2018
Variance heterogeneity is a common feature of educational data when treatment differences expressed through means are present, and often reflects a treatment by subject interaction with respect to an outcome variable. Identifying variables that account for this interaction can enhance understanding of whom a treatment does and does not benefit in…
Descriptors: Educational Research, Hierarchical Linear Modeling, Engineering, Design
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4