NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 49 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Mariola Moeyaert; Panpan Yang; Yukang Xue – Journal of Experimental Education, 2024
We have entered an era in which scientific evidence increasingly informs research practice and policy. As there is an exponential increase in the use of single-case experimental designs (SCEDs) to evaluate intervention effectiveness, there is accumulating evidence available for quantitative synthesis. Consequently, there is a growing interest in…
Descriptors: Meta Analysis, Research Design, Synthesis, Patients
Brian T. Keller; Craig K. Enders – Grantee Submission, 2023
A growing body of literature has focused on missing data methods that factorize the joint distribution into a part representing the analysis model of interest and a part representing the distributions of the incomplete predictors. Relatively little is known about the utility of this method for multilevel models with interactive effects. This study…
Descriptors: Data Analysis, Hierarchical Linear Modeling, Monte Carlo Methods, Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Kyle Cox; Ben Kelcey; Hannah Luce – Journal of Experimental Education, 2024
Comprehensive evaluation of treatment effects is aided by considerations for moderated effects. In educational research, the combination of natural hierarchical structures and prevalence of group-administered or shared facilitator treatments often produces three-level partially nested data structures. Literature details planning strategies for a…
Descriptors: Randomized Controlled Trials, Monte Carlo Methods, Hierarchical Linear Modeling, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Rüttenauer, Tobias; Ludwig, Volker – Sociological Methods & Research, 2023
Fixed effects (FE) panel models have been used extensively in the past, as those models control for all stable heterogeneity between units. Still, the conventional FE estimator relies on the assumption of parallel trends between treated and untreated groups. It returns biased results in the presence of heterogeneous slopes or growth curves that…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Statistical Bias, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Fay, Derek M.; Levy, Roy; Schulte, Ann C. – Journal of Experimental Education, 2022
Longitudinal data structures are frequently encountered in a variety of disciplines in the social and behavioral sciences. Growth curve modeling offers a highly extensible framework that allows for the exploration of rich hypotheses. However, owing to the presence of interrelated sources of potential data-model misfit at multiple levels, the…
Descriptors: Measurement, Models, Bayesian Statistics, Hierarchical Linear Modeling
Moeyaert, Mariola; Yang, Panpan; Xu, Xinyun – Grantee Submission, 2021
This study investigated the power of two-level hierarchical linear modeling (HLM) to explain variability in intervention effectiveness between participants in context of single-case experimental design (SCED) research. HLM is a flexible technique that allows the inclusion of participant characteristics (e.g., age, gender, and disability types) as…
Descriptors: Hierarchical Linear Modeling, Intervention, Research Design, Participant Characteristics
Peer reviewed Peer reviewed
Direct linkDirect link
Umut Atasever; Francis L. Huang; Leslie Rutkowski – Large-scale Assessments in Education, 2025
When analyzing large-scale assessments (LSAs) that use complex sampling designs, it is important to account for probability sampling using weights. However, the use of these weights in multilevel models has been widely debated, particularly regarding their application at different levels of the model. Yet, no consensus has been reached on the best…
Descriptors: Mathematics Tests, International Assessment, Elementary Secondary Education, Foreign Countries
Peer reviewed Peer reviewed
Direct linkDirect link
Fox, Jean-Paul; Wenzel, Jeremias; Klotzke, Konrad – Journal of Educational and Behavioral Statistics, 2021
Standard item response theory (IRT) models have been extended with testlet effects to account for the nesting of items; these are well known as (Bayesian) testlet models or random effect models for testlets. The testlet modeling framework has several disadvantages. A sufficient number of testlet items are needed to estimate testlet effects, and a…
Descriptors: Bayesian Statistics, Tests, Item Response Theory, Hierarchical Linear Modeling
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Yan; Kim, Eunsook; Joo, Seang-Hwane; Chun, Seokjoon; Alamri, Abeer; Lee, Philseok; Stark, Stephen – Journal of Experimental Education, 2022
Multilevel latent class analysis (MLCA) has been increasingly used to investigate unobserved population heterogeneity while taking into account data dependency. Nonparametric MLCA has gained much popularity due to the advantage of classifying both individuals and clusters into latent classes. This study demonstrated the need to relax the…
Descriptors: Nonparametric Statistics, Hierarchical Linear Modeling, Monte Carlo Methods, Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Ting; Konstantopoulos, Spyros – Practical Assessment, Research & Evaluation, 2022
Large-scale assessment survey (LSAS) data are collected via complex sampling designs with special features (e.g., clustering and unequal probability of selection). Multilevel models have been utilized to account for clustering effects whereas the probability weighting approach (PWA) has been used to deal with design informativeness derived from…
Descriptors: Sampling, Weighted Scores, Hierarchical Linear Modeling, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Baek, Eunkyeng; Beretvas, S. Natasha; Van den Noortgate, Wim; Ferron, John M. – Journal of Experimental Education, 2020
Recently, researchers have used multilevel models for estimating intervention effects in single-case experiments that include replications across participants (e.g., multiple baseline designs) or for combining results across multiple single-case studies. Researchers estimating these multilevel models have primarily relied on restricted maximum…
Descriptors: Bayesian Statistics, Intervention, Case Studies, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Shen, Ting; Konstantopoulos, Spyros – Journal of Experimental Education, 2022
Large-scale education data are collected via complex sampling designs that incorporate clustering and unequal probability of selection. Multilevel models are often utilized to account for clustering effects. The probability weighted approach (PWA) has been frequently used to deal with the unequal probability of selection. In this study, we examine…
Descriptors: Data Collection, Educational Research, Hierarchical Linear Modeling, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Sunyoung; Natasha Beretvas, S. – Journal of Experimental Education, 2021
When selecting a multilevel model to fit to a dataset, it is important to choose both a model that best matches characteristics of the data's structure, but also to include the appropriate fixed and random effects parameters. For example, when researchers analyze clustered data (e.g., students nested within schools), the multilevel model can be…
Descriptors: Hierarchical Linear Modeling, Statistical Significance, Multivariate Analysis, Monte Carlo Methods
Fan Pan – ProQuest LLC, 2021
This dissertation informed researchers about the performance of different level-specific and target-specific model fit indices in Multilevel Latent Growth Model (MLGM) using unbalanced design and different trajectories. As the use of MLGMs is a relatively new field, this study helped further the field by informing researchers interested in using…
Descriptors: Goodness of Fit, Item Response Theory, Growth Models, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Chang, Wanchen; Pituch, Keenan A. – Journal of Experimental Education, 2019
When data for multiple outcomes are collected in a multilevel design, researchers can select a univariate or multivariate analysis to examine group-mean differences. When correlated outcomes are incomplete, a multivariate multilevel model (MVMM) may provide greater power than univariate multilevel models (MLMs). For a two-group multilevel design…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Research Problems, Error of Measurement
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4