Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 13 |
Since 2016 (last 10 years) | 23 |
Since 2006 (last 20 years) | 39 |
Descriptor
Data Analysis | 57 |
Higher Education | 57 |
Prediction | 57 |
Models | 23 |
Foreign Countries | 16 |
Decision Making | 13 |
Data Collection | 11 |
College Students | 10 |
Academic Achievement | 8 |
Artificial Intelligence | 8 |
At Risk Students | 8 |
More ▼ |
Source
Author
A. Noraziah | 1 |
Adrienne D. Woods | 1 |
Ahiakwo, Okechukwu N. | 1 |
Alampay, Liane Pena | 1 |
Altieri, Nicholas | 1 |
Ambrosio, Fabio | 1 |
Amelia Parnell | 1 |
Bailey, Brenda L. | 1 |
Barrett, N. | 1 |
Beemer, Joshua | 1 |
Ben Van Dusen | 1 |
More ▼ |
Publication Type
Education Level
Audience
Administrators | 1 |
Practitioners | 1 |
Location
United Kingdom | 5 |
Germany | 4 |
Australia | 3 |
Florida | 3 |
Ohio | 3 |
United Kingdom (England) | 3 |
United States | 3 |
Brazil | 2 |
California | 2 |
Greece | 2 |
Italy | 2 |
More ▼ |
Laws, Policies, & Programs
Every Student Succeeds Act… | 1 |
Higher Education Act Title IV | 1 |
Assessments and Surveys
SAT (College Admission Test) | 3 |
Program for International… | 1 |
Study Process Questionnaire | 1 |
Trends in International… | 1 |
What Works Clearinghouse Rating
Kelli Bird – Association for Institutional Research, 2023
Colleges are increasingly turning to predictive analytics to identify "at-risk" students in order to target additional supports. While recent research demonstrates that the types of prediction models in use are reasonably accurate at identifying students who will eventually succeed or not, there are several other considerations for the…
Descriptors: Prediction, Data Analysis, Artificial Intelligence, Identification
M. Nazir; A. Noraziah; M. Rahmah – International Journal of Virtual and Personal Learning Environments, 2023
An effective educational program warrants the inclusion of an innovative construction that enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational decision support system has currently been a hot topic in educational systems, facilitating the pupil…
Descriptors: Data Analysis, Academic Achievement, Artificial Intelligence, Prediction
Mohamed Zine; Fouzi Harrou; Mohammed Terbeche; Ying Sun – Education and Information Technologies, 2025
E-learning readiness (ELR) is critical for implementing digital education strategies, particularly in developing countries where online learning faces unique challenges. This study aims to provide a concise and actionable framework for assessing and predicting ELR in Algerian universities by combining the ADKAR model with advanced machine learning…
Descriptors: Electronic Learning, Learning Readiness, Artificial Intelligence, Organizational Change
Amelia Parnell – Journal of Postsecondary Student Success, 2022
Data-informed decision-making is no longer an optional or occasional practice, as higher education professionals now routinely respond to calls for accountability by providing data to show how their work impacts students. Institutions are operating with a culture that, at a minimum, includes the use of descriptive and diagnostic analyses to assess…
Descriptors: Student Needs, Data Use, Prediction, Data Analysis
Caspari-Sadeghi, Sima – Cogent Education, 2023
Data-driven decision-making and data-intensive research are becoming prevalent in many sectors of modern society, i.e. healthcare, politics, business, and entertainment. During the COVID-19 pandemic, huge amounts of educational data and new types of evidence were generated through various online platforms, digital tools, and communication…
Descriptors: Learning Analytics, Data Analysis, Higher Education, Feedback (Response)
Selma Tosun; Dilara Bakan Kalaycioglu – Journal of Educational Technology and Online Learning, 2024
Predicting and improving the academic achievement of university students is a multifactorial problem. Considering the low success rates and high dropout rates, particularly in open education programs characterized by mass enrollment, academic success is an important research area with its causes and consequences. This study aimed to solve a…
Descriptors: Academic Achievement, Open Education, Distance Education, Foreign Countries
Ben Van Dusen; Heidi Cian; Jayson Nissen; Lucy Arellano; Adrienne D. Woods – Sociology of Education, 2024
This investigation examines the efficacy of multilevel analysis of individual heterogeneity and discriminatory accuracy (MAIHDA) over fixed-effects models when performing intersectional studies. The research questions are as follows: (1) What are typical strata representation rates and outcomes on physics research-based assessments? (2) To what…
Descriptors: Educational Research, Intersectionality, Critical Race Theory, STEM Education
Paassen, Benjamin; McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – Journal of Educational Data Mining, 2021
Educational data mining involves the application of data mining techniques to student activity. However, in the context of computer programming, many data mining techniques can not be applied because they require vector-shaped input, whereas computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that…
Descriptors: Data Analysis, Programming Languages, Networks, Novices
Larkan-Skinner, Kara; Shedd, Jessica M. – New Directions for Institutional Research, 2020
As institutions seek to shift into more advanced analytics and data-based decision-support, many institutional research offices face the challenge of meeting the office's current demands while taking on more intricate and specialized work to support decision-making. Given the great need organizations have for information that supports real-time…
Descriptors: Data, Data Analysis, Prediction, Data Use
Colver, Mitchell – New Directions for Institutional Research, 2019
As we become increasingly acquainted with the rich opportunities that analytics systems can provide, there is a commensurate need to consider the extent to which analytics tools are effectively integrated, with proper training, into the day-to-day functioning of higher education professionals. This chapter explores the extent to which predictive…
Descriptors: Data Collection, Data Analysis, Educational Research, Higher Education
Selwyn, Neil; Gaševic, Dragan – Teaching in Higher Education, 2020
A common recommendation in critiques of datafication in education is for greater conversation between the two sides of the (critical) divide -- what might be characterised as sceptical social scientists and (supposedly) more technically-minded and enthusiastic data scientists. This article takes the form of a dialogue between two academics…
Descriptors: Criticism, Data Analysis, Higher Education, Dialogs (Language)
Cardona, Tatiana; Cudney, Elizabeth A.; Hoerl, Roger; Snyder, Jennifer – Journal of College Student Retention: Research, Theory & Practice, 2023
This study presents a systematic review of the literature on the predicting student retention in higher education through machine learning algorithms based on measures such as dropout risk, attrition risk, and completion risk. A systematic review methodology was employed comprised of review protocol, requirements for study selection, and analysis…
Descriptors: Learning Analytics, Data Analysis, Prediction, Higher Education
Iatrellis, Omiros; Savvas, Ilias ?.; Fitsilis, Panos; Gerogiannis, Vassilis C. – Education and Information Technologies, 2021
Learning analytics have proved promising capabilities and opportunities to many aspects of academic research and higher education studies. Data-driven insights can significantly contribute to provide solutions for curbing costs and improving education quality. This paper adopts a two-phase machine learning approach, which utilizes both…
Descriptors: Prediction, Outcomes of Education, Higher Education, Data Analysis
Kazak, Sibel; Fujita, Taro; Turmo, Manoli Pifarre – Mathematical Thinking and Learning: An International Journal, 2023
In today's age of information, the use of data is very powerful in making informed decisions. Data analytics is a field that is interested in identifying and interpreting trends and patterns within big data to make data-driven decisions. We focus on informal statistical inference and data modeling as a means of developing students' data analytics…
Descriptors: Statistical Inference, Mathematics Skills, Mathematics Instruction, Secondary School Students
Liu, Xiaoming; Schwieger, Dana – Information Systems Education Journal, 2023
Rapid advancements and emergent technologies add an additional layer of complexity to preparing computer science and information technology higher education students for entering the post pandemic job market. Knowing and predicting employers' technical skill needs is essential for shaping curriculum development to address the emergent skill gap.…
Descriptors: Network Analysis, Employment Opportunities, Information Technology, Computer Science Education