NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Peer reviewed Peer reviewed
PDF on ERIC Download full text
So, Joseph Chi-ho; Wong, Adam Ka-lok; Tsang, Kia Ho-yin; Chan, Ada Pui-ling; Wong, Simon Chi-wang; Chan, Henry C. B. – Journal of Technology and Science Education, 2023
The project presented in this paper aims to formulate a recommendation framework that consolidates the higher education students' particulars such as their academic background, current study and student activity records, their attended higher education institution's expectations of graduate attributes and self-assessment of their own generic…
Descriptors: Pattern Recognition, Artificial Intelligence, Higher Education, College Students
Peer reviewed Peer reviewed
Direct linkDirect link
Liao, Shu-Min – Journal of Statistics and Data Science Education, 2023
SCRATCH, developed by the Media Lab at MIT, is a kid-friendly visual programming language, designed to introduce programming to children and teens in a "more thinkable, more meaningful, and more social" way. Although it was initially intended for K-12 students, educators have used it for higher education as well, and found it…
Descriptors: Teaching Methods, Coding, Programming Languages, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Silva-Maceda, Gabriela; Arjona-Villicaña, P. David; Castillo-Barrera, F. Edgar – IEEE Transactions on Education, 2016
Learning to program is a complex task, and the impact of different pedagogical approaches to teach this skill has been hard to measure. This study examined the performance data of seven cohorts of students (N = 1168) learning programming under three different pedagogical approaches. These pedagogical approaches varied either in the length of the…
Descriptors: Programming, Teaching Methods, Intermode Differences, Cohort Analysis