NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rosa W. Runhardt – Sociological Methods & Research, 2024
This article uses the interventionist theory of causation, a counterfactual theory taken from philosophy of science, to strengthen causal analysis in process tracing research. Causal claims from process tracing are re-expressed in terms of so-called hypothetical interventions, and concrete evidential tests are proposed which are shown to…
Descriptors: Causal Models, Statistical Inference, Intervention, Investigations
Peer reviewed Peer reviewed
Direct linkDirect link
Brauer, Jonathan R.; Day, Jacob C.; Hammond, Brittany M. – Sociological Methods & Research, 2021
This article presents two alternative methods to null hypothesis significance testing (NHST) for improving inferences from underpowered research designs. Post hoc design analysis (PHDA) assesses whether an NHST analysis generating null findings might otherwise have had sufficient power to detect effects of plausible magnitudes. Bayesian analysis…
Descriptors: Hypothesis Testing, Statistical Analysis, Bayesian Statistics, Statistical Significance
Peer reviewed Peer reviewed
Direct linkDirect link
Held, Leonhard; Matthews, Robert; Ott, Manuela; Pawel, Samuel – Research Synthesis Methods, 2022
It is now widely accepted that the standard inferential toolkit used by the scientific research community--null-hypothesis significance testing (NHST)--is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches for evidence assessment. This lack of consensus reflects…
Descriptors: Bayesian Statistics, Statistical Inference, Hypothesis Testing, Credibility
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Deke, John; Finucane, Mariel; Thal, Daniel – National Center for Education Evaluation and Regional Assistance, 2022
BASIE is a framework for interpreting impact estimates from evaluations. It is an alternative to null hypothesis significance testing. This guide walks researchers through the key steps of applying BASIE, including selecting prior evidence, reporting impact estimates, interpreting impact estimates, and conducting sensitivity analyses. The guide…
Descriptors: Bayesian Statistics, Educational Research, Data Interpretation, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Patriota, Alexandre Galvão – Educational and Psychological Measurement, 2017
Bayesian and classical statistical approaches are based on different types of logical principles. In order to avoid mistaken inferences and misguided interpretations, the practitioner must respect the inference rules embedded into each statistical method. Ignoring these principles leads to the paradoxical conclusions that the hypothesis…
Descriptors: Hypothesis Testing, Bayesian Statistics, Statistical Inference, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Marmolejo-Ramos, Fernando; Cousineau, Denis – Educational and Psychological Measurement, 2017
The number of articles showing dissatisfaction with the null hypothesis statistical testing (NHST) framework has been progressively increasing over the years. Alternatives to NHST have been proposed and the Bayesian approach seems to have achieved the highest amount of visibility. In this last part of the special issue, a few alternative…
Descriptors: Hypothesis Testing, Bayesian Statistics, Evaluation Methods, Statistical Inference
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Page, Robert; Satake, Eiki – Journal of Education and Learning, 2017
While interest in Bayesian statistics has been growing in statistics education, the treatment of the topic is still inadequate in both textbooks and the classroom. Because so many fields of study lead to careers that involve a decision-making process requiring an understanding of Bayesian methods, it is becoming increasingly clear that Bayesian…
Descriptors: Probability, Bayesian Statistics, Hypothesis Testing, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David – Educational and Psychological Measurement, 2017
There has been much controversy over the null hypothesis significance testing procedure, with much of the criticism centered on the problem of inverse inference. Specifically, p gives the probability of the finding (or one more extreme) given the null hypothesis, whereas the null hypothesis significance testing procedure involves drawing a…
Descriptors: Statistical Inference, Hypothesis Testing, Probability, Intervals
Peer reviewed Peer reviewed
Direct linkDirect link
García-Pérez, Miguel A. – Educational and Psychological Measurement, 2017
Null hypothesis significance testing (NHST) has been the subject of debate for decades and alternative approaches to data analysis have been proposed. This article addresses this debate from the perspective of scientific inquiry and inference. Inference is an inverse problem and application of statistical methods cannot reveal whether effects…
Descriptors: Hypothesis Testing, Statistical Inference, Effect Size, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Jarosz, Andrew F.; Wiley, Jennifer – Journal of Problem Solving, 2014
The purpose of this paper is to provide an easy template for the inclusion of the Bayes factor in reporting experimental results, particularly as a recommendation for articles in the "Journal of Problem Solving." The Bayes factor provides information with a similar purpose to the "p"-value--to allow the researcher to make…
Descriptors: Problem Solving, Bayesian Statistics, Statistical Inference, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Maraun, Michael; Gabriel, Stephanie – Psychological Methods, 2010
In his article, "An Alternative to Null-Hypothesis Significance Tests," Killeen (2005) urged the discipline to abandon the practice of "p[subscript obs]"-based null hypothesis testing and to quantify the signal-to-noise characteristics of experimental outcomes with replication probabilities. He described the coefficient that he…
Descriptors: Hypothesis Testing, Statistical Inference, Probability, Statistical Significance
Peer reviewed Peer reviewed
Direct linkDirect link
Killeen, Peter R. – Psychological Methods, 2010
Lecoutre, Lecoutre, and Poitevineau (2010) have provided sophisticated grounding for "p[subscript rep]." Computing it precisely appears, fortunately, no more difficult than doing so approximately. Their analysis will help move predictive inference into the mainstream. Iverson, Wagenmakers, and Lee (2010) have also validated…
Descriptors: Replication (Evaluation), Measurement Techniques, Research Design, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Brownstein, Naomi; Pensky, Marianna – Journal of Statistics Education, 2008
The objective of the present paper is to provide a simple approach to statistical inference using the method of transformations of variables. We demonstrate performance of this powerful tool on examples of constructions of various estimation procedures, hypothesis testing, Bayes analysis and statistical inference for the stress-strength systems.…
Descriptors: Transformations (Mathematics), Computation, Hypothesis Testing, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Lecoutre, Bruno; Lecoutre, Marie-Paule; Poitevineau, Jacques – Psychological Methods, 2010
P. R. Killeen's (2005a) probability of replication ("p[subscript rep]") of an experimental result is the fiducial Bayesian predictive probability of finding a same-sign effect in a replication of an experiment. "p[subscript rep]" is now routinely reported in "Psychological Science" and has also begun to appear in…
Descriptors: Research Methodology, Guidelines, Probability, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Iverson, Geoffrey J.; Wagenmakers, Eric-Jan; Lee, Michael D. – Psychological Methods, 2010
The purpose of the recently proposed "p[subscript rep]" statistic is to estimate the probability of concurrence, that is, the probability that a replicate experiment yields an effect of the same sign (Killeen, 2005a). The influential journal "Psychological Science" endorses "p[subscript rep]" and recommends its use…
Descriptors: Effect Size, Evaluation Methods, Probability, Experiments
Previous Page | Next Page »
Pages: 1  |  2