NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Beth Chance; Karen McGaughey; Sophia Chung; Alex Goodman; Soma Roy; Nathan Tintle – Journal of Statistics and Data Science Education, 2025
"Simulation-based inference" is often considered a pedagogical strategy for helping students develop inferential reasoning, for example, giving them a visual and concrete reference for deciding whether the observed statistic is unlikely to happen by chance alone when the null hypothesis is true. In this article, we highlight for teachers…
Descriptors: Simulation, Sampling, Randomized Controlled Trials, Hypothesis Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Held, Leonhard; Matthews, Robert; Ott, Manuela; Pawel, Samuel – Research Synthesis Methods, 2022
It is now widely accepted that the standard inferential toolkit used by the scientific research community--null-hypothesis significance testing (NHST)--is not fit for purpose. Yet despite the threat posed to the scientific enterprise, there is no agreement concerning alternative approaches for evidence assessment. This lack of consensus reflects…
Descriptors: Bayesian Statistics, Statistical Inference, Hypothesis Testing, Credibility
Peer reviewed Peer reviewed
Direct linkDirect link
Stapleton, Laura M.; McNeish, Daniel M.; Yang, Ji Seung – Educational Psychologist, 2016
Multilevel models are often used to evaluate hypotheses about relations among constructs when data are nested within clusters (Raudenbush & Bryk, 2002), although alternative approaches are available when analyzing nested data (Binder & Roberts, 2003; Sterba, 2009). The overarching goal of this article is to suggest when it is appropriate…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Statistical Data, Multivariate Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Buchanan, Taylor L.; Lohse, Keith R. – Measurement in Physical Education and Exercise Science, 2016
We surveyed researchers in the health and exercise sciences to explore different areas and magnitudes of bias in researchers' decision making. Participants were presented with scenarios (testing a central hypothesis with p = 0.06 or p = 0.04) in a random order and surveyed about what they would do in each scenario. Participants showed significant…
Descriptors: Researchers, Attitudes, Statistical Significance, Bias