Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 3 |
Since 2006 (last 20 years) | 10 |
Descriptor
Inferences | 11 |
Bayesian Statistics | 6 |
Logical Thinking | 4 |
Models | 4 |
Probability | 4 |
Hypothesis Testing | 3 |
Observation | 3 |
Accuracy | 2 |
Causal Models | 2 |
Cognitive Processes | 2 |
Cognitive Psychology | 2 |
More ▼ |
Source
Cognitive Science | 3 |
Cognition | 2 |
Developmental Psychology | 2 |
Psychological Review | 2 |
Cognitive Psychology | 1 |
Journal of Experimental… | 1 |
Author
Publication Type
Journal Articles | 11 |
Reports - Research | 7 |
Reports - Evaluative | 3 |
Reports - Descriptive | 1 |
Education Level
Adult Education | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Preschool Education | 1 |
Audience
Location
California | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Austerweil, Joseph L.; Sanborn, Sophia; Griffiths, Thomas L. – Cognitive Science, 2019
Generalization is a fundamental problem solved by every cognitive system in essentially every domain. Although it is known that how people generalize varies in complex ways depending on the context or domain, it is an open question how people "learn" the appropriate way to generalize for a new context. To understand this capability, we…
Descriptors: Generalization, Logical Thinking, Inferences, Bayesian Statistics
Bridgers, Sophie; Buchsbaum, Daphna; Seiver, Elizabeth; Griffiths, Thomas L.; Gopnik, Alison – Developmental Psychology, 2016
Preschoolers use both direct observation of statistical data and informant testimony to learn causal relationships. Can children integrate information from these sources, especially when source reliability is uncertain? We investigate how children handle a conflict between what they hear and what they see. In Experiment 1, 4-year-olds were…
Descriptors: Preschool Children, Inferences, Observation, Conflict
Austerweil, Joseph L.; Griffiths, Thomas L.; Palmer, Stephen E. – Cognitive Science, 2017
How does the visual system recognize images of a novel object after a single observation despite possible variations in the viewpoint of that object relative to the observer? One possibility is comparing the image with a prototype for invariance over a relevant transformation set (e.g., translations and dilations). However, invariance over…
Descriptors: Prior Learning, Inferences, Visual Acuity, Recognition (Psychology)
Rafferty, Anna N.; LaMar, Michelle M.; Griffiths, Thomas L. – Cognitive Science, 2015
Watching another person take actions to complete a goal and making inferences about that person's knowledge is a relatively natural task for people. This ability can be especially important in educational settings, where the inferences can be used for assessment, diagnosing misconceptions, and providing informative feedback. In this paper, we…
Descriptors: Inferences, Knowledge Level, Educational Games, Computer Simulation
Denison, Stephanie; Bonawitz, Elizabeth; Gopnik, Alison; Griffiths, Thomas L. – Cognition, 2013
We present a proposal--"The Sampling Hypothesis"--suggesting that the variability in young children's responses may be part of a rational strategy for inductive inference. In particular, we argue that young learners may be randomly sampling from the set of possible hypotheses that explain the observed data, producing different hypotheses with…
Descriptors: Sampling, Probability, Preschool Children, Inferences
Williams, Joseph J.; Griffiths, Thomas L. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2013
Errors in detecting randomness are often explained in terms of biases and misconceptions. We propose and provide evidence for an account that characterizes the contribution of the inherent statistical difficulty of the task. Our account is based on a Bayesian statistical analysis, focusing on the fact that a random process is a special case of…
Descriptors: Experimental Psychology, Bias, Misconceptions, Statistical Analysis
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Psychological Review, 2009
Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations…
Descriptors: Causal Models, Prior Learning, Logical Thinking, Statistical Inference
Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei – Cognition, 2011
We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…
Descriptors: Bayesian Statistics, Cognitive Psychology, Inferences, Cognitive Development
Sanborn, Adam N.; Griffiths, Thomas L.; Navarro, Daniel J. – Psychological Review, 2010
Rational models of cognition typically consider the abstract computational problems posed by the environment, assuming that people are capable of optimally solving those problems. This differs from more traditional formal models of cognition, which focus on the psychological processes responsible for behavior. A basic challenge for rational models…
Descriptors: Models, Cognitive Processes, Psychology, Monte Carlo Methods
Schulz, Laura E.; Bonawitz, Elizabeth Baraff; Griffiths, Thomas L. – Developmental Psychology, 2007
Causal learning requires integrating constraints provided by domain-specific theories with domain-general statistical learning. In order to investigate the interaction between these factors, the authors presented preschoolers with stories pitting their existing theories against statistical evidence. Each child heard 2 stories in which 2 candidate…
Descriptors: Inferences, Young Children, Bayesian Statistics, Story Telling
Griffiths, Thomas L.; Tenenbaum, Joshua B. – Cognitive Psychology, 2005
We present a framework for the rational analysis of elemental causal induction--learning about the existence of a relationship between a single cause and effect--based upon causal graphical models. This framework makes precise the distinction between causal structure and causal strength: the difference between asking whether a causal relationship…
Descriptors: Probability, Logical Thinking, Inferences, Causal Models