Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 7 |
Descriptor
Source
Cognitive Science | 7 |
Author
Publication Type
Journal Articles | 7 |
Reports - Research | 4 |
Reports - Descriptive | 2 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Mayrhofer, Ralf; Waldmann, Michael R. – Cognitive Science, 2016
Research on human causal induction has shown that people have general prior assumptions about causal strength and about how causes interact with the background. We propose that these prior assumptions about the parameters of causal systems do not only manifest themselves in estimations of causal strength or the selection of causes but also when…
Descriptors: Causal Models, Bayesian Statistics, Inferences, Probability
Halpern, Joseph Y.; Hitchcock, Christopher – Cognitive Science, 2013
Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of "normality." In Halpern and Hitchcock (2011), we offer a definition of actual causation…
Descriptors: Causal Models, Cognitive Science, Definitions, Correlation
Rips, Lance J.; Edwards, Brian J. – Cognitive Science, 2013
This article reports results from two studies of how people answer counterfactual questions about simple machines. Participants learned about devices that have a specific configuration of components, and they answered questions of the form "If component X had not operated [failed], would component Y have operated?" The data from these…
Descriptors: Inferences, Logical Thinking, Cognitive Psychology, Causal Models
Pearl, Judea – Cognitive Science, 2013
Recent advances in causal reasoning have given rise to a computational model that emulates the process by which humans generate, evaluate, and distinguish counterfactual sentences. Contrasted with the "possible worlds" account of counterfactuals, this "structural" model enjoys the advantages of representational economy,…
Descriptors: Causal Models, Cognitive Science, Sentences, Inferences
Sloman, Steven A. – Cognitive Science, 2013
Judea Pearl won the 2010 Rumelhart Prize in computational cognitive science due to his seminal contributions to the development of Bayes nets and causal Bayes nets, frameworks that are central to multiple domains of the computational study of mind. At the heart of the causal Bayes nets formalism is the notion of a counterfactual, a representation…
Descriptors: Causal Models, Cognitive Psychology, Cognitive Science, Cognitive Processes
Fernando, Chrisantha – Cognitive Science, 2013
How do human infants learn the causal dependencies between events? Evidence suggests that this remarkable feat can be achieved by observation of only a handful of examples. Many computational models have been produced to explain how infants perform causal inference without explicit teaching about statistics or the scientific method. Here, we…
Descriptors: Brain Hemisphere Functions, Infants, Inferences, Causal Models
Weisberg, Deena S.; Gopnik, Alison – Cognitive Science, 2013
Young children spend a large portion of their time pretending about non-real situations. Why? We answer this question by using the framework of Bayesian causal models to argue that pretending and counterfactual reasoning engage the same component cognitive abilities: disengaging with current reality, making inferences about an alternative…
Descriptors: Causal Models, Bayesian Statistics, Young Children, Imagination