NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 17 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Clemens Draxler; Andreas Kurz; Can Gürer; Jan Philipp Nolte – Journal of Educational and Behavioral Statistics, 2024
A modified and improved inductive inferential approach to evaluate item discriminations in a conditional maximum likelihood and Rasch modeling framework is suggested. The new approach involves the derivation of four hypothesis tests. It implies a linear restriction of the assumed set of probability distributions in the classical approach that…
Descriptors: Inferences, Test Items, Item Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Hasegawa, Raiden B.; Deshpande, Sameer K.; Small, Dylan S.; Rosenbaum, Paul R. – Journal of Educational and Behavioral Statistics, 2020
Causal effects are commonly defined as comparisons of the potential outcomes under treatment and control, but this definition is threatened by the possibility that either the treatment or the control condition is not well defined, existing instead in more than one version. This is often a real possibility in nonexperimental or observational…
Descriptors: Causal Models, Inferences, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Monroe, Scott – Journal of Educational and Behavioral Statistics, 2019
In item response theory (IRT) modeling, the Fisher information matrix is used for numerous inferential procedures such as estimating parameter standard errors, constructing test statistics, and facilitating test scoring. In principal, these procedures may be carried out using either the expected information or the observed information. However, in…
Descriptors: Item Response Theory, Error of Measurement, Scoring, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Pek, Jolynn; Chalmers, R. Philip; Kok, Bethany E.; Losardo, Diane – Journal of Educational and Behavioral Statistics, 2015
Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural…
Descriptors: Structural Equation Models, Nonparametric Statistics, Regression (Statistics), Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Tutz, Gerhard; Berger, Moritz – Journal of Educational and Behavioral Statistics, 2016
Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…
Descriptors: Response Style (Tests), Rating Scales, Data Interpretation, Statistical Bias
Andrew Gelman; Daniel Lee; Jiqiang Guo – Journal of Educational and Behavioral Statistics, 2015
Stan is a free and open-source C++ program that performs Bayesian inference or optimization for arbitrary user-specified models and can be called from the command line, R, Python, Matlab, or Julia and has great promise for fitting large and complex statistical models in many areas of application. We discuss Stan from users' and developers'…
Descriptors: Programming Languages, Bayesian Statistics, Inferences, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Shin, Yongyun; Raudenbush, Stephen W. – Journal of Educational and Behavioral Statistics, 2010
In organizational studies involving multiple levels, the association between a covariate and an outcome often differs at different levels of aggregation, giving rise to widespread interest in "contextual effects models." Such models partition the regression into within- and between-cluster components. The conventional approach uses each…
Descriptors: Academic Achievement, National Surveys, Computation, Inferences
Peer reviewed Peer reviewed
Direct linkDirect link
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2010
In this essay, the author tries to look forward into the 21st century to divine three things: (i) What skills will researchers in the future need to solve the most pressing problems? (ii) What are some of the most likely candidates to be those problems? and (iii) What are some current areas of research that seem mined out and should not distract…
Descriptors: Research Skills, Researchers, Internet, Access to Information
Peer reviewed Peer reviewed
Direct linkDirect link
Hafdahl, Adam R. – Journal of Educational and Behavioral Statistics, 2007
The originally proposed multivariate meta-analysis approach for correlation matrices--analyze Pearson correlations, with each study's observed correlations replacing their population counterparts in its conditional-covariance matrix--performs poorly. Two refinements are considered: Analyze Fisher Z-transformed correlations, and substitute better…
Descriptors: Monte Carlo Methods, Correlation, Meta Analysis, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Grilli, Leonardo; Mealli, Fabrizia – Journal of Educational and Behavioral Statistics, 2008
The authors propose a methodology based on the principal strata approach to causal inference for assessing the relative effectiveness of two degree programs with respect to the employment status of their graduates. An innovative use of nonparametric bounds in the principal strata framework is shown, examining the role of some assumptions in…
Descriptors: Political Science, Employment Level, Outcomes of Education, Nonparametric Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Briggs, Derek C. – Journal of Educational and Behavioral Statistics, 2004
In the social sciences, evaluating the effectiveness of a program or intervention often leads researchers to draw causal inferences from observational research designs. Bias in estimated causal effects becomes an obvious problem in such settings. This article presents the Heckman Model as an approach sometimes applied to observational data for the…
Descriptors: Social Science Research, Statistical Inference, Causal Models, Test Bias
Peer reviewed Peer reviewed
Direct linkDirect link
Mislevy, Robert J. – Journal of Educational and Behavioral Statistics, 2004
An "Educational Researcher" article by Pamela Moss (1994) asks the title question, "Can there be validity without reliability?" Yes, she answers, if by reliability one means "consistency among independent observations intended as interchangeable" (Moss, 1994, p. 7), quantified by internal consistency indices such as…
Descriptors: Psychometrics, Inferences, Validity, Educational Research
Peer reviewed Peer reviewed
Bradlow, Eric T.; Thomas, Neal – Journal of Educational and Behavioral Statistics, 1998
A set of conditions is presented for the validity of inference for Item Response Theory (IRT) models applied to data collected from examinations that allow students to choose a subset of items. Common low-dimensional IRT models estimated by standard methods do not resolve the difficult problems posed by choice-based data. (SLD)
Descriptors: Inferences, Item Response Theory, Models, Selection
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2004
There is an increasing use of Markov chain Monte Carlo (MCMC) algorithms for fitting statistical models in psychometrics, especially in situations where the traditional estimation techniques are very difficult to apply. One of the disadvantages of using an MCMC algorithm is that it is not straightforward to determine the convergence of the…
Descriptors: Psychometrics, Mathematics, Inferences, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Pan, Wei; Frank, Kenneth A. – Journal of Educational and Behavioral Statistics, 2003
Causal inference is an important, controversial topic in the social sciences, where it is difficult to conduct experiments or measure and control for all confounding variables. To address this concern, the present study presents a probability index to assess the robustness of a causal inference to the impact of a confounding variable. The…
Descriptors: Research Methodology, Educational Attainment, Social Sciences, Program Effectiveness
Previous Page | Next Page »
Pages: 1  |  2