Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 18 |
Descriptor
Causal Models | 22 |
Evaluation Methods | 22 |
Inferences | 22 |
Research Methodology | 7 |
Comparative Analysis | 6 |
Research Design | 6 |
Program Effectiveness | 4 |
Program Evaluation | 4 |
Regression (Statistics) | 4 |
Validity | 4 |
Qualitative Research | 3 |
More ▼ |
Source
Author
Steiner, Peter M. | 3 |
Baumgartner, Michael | 2 |
Cook, Thomas D. | 2 |
Ambühl, Mathias | 1 |
Bell, Stephen H. | 1 |
Bello-Gomez, Ricardo A. | 1 |
Briggs, Derek C. | 1 |
Chan, Wendy | 1 |
Drachsler, Hendrik | 1 |
Elwert, Felix | 1 |
Galster, George | 1 |
More ▼ |
Publication Type
Journal Articles | 21 |
Reports - Research | 7 |
Reports - Descriptive | 6 |
Reports - Evaluative | 6 |
Opinion Papers | 2 |
Collected Works - Serials | 1 |
ERIC Digests in Full Text | 1 |
ERIC Publications | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 5 |
Postsecondary Education | 3 |
Elementary Education | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Secondary Education | 2 |
Grade 4 | 1 |
Grade 8 | 1 |
Intermediate Grades | 1 |
Audience
Location
Indiana | 1 |
Laws, Policies, & Programs
No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
National Assessment of… | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Baumgartner, Michael; Ambühl, Mathias – Sociological Methods & Research, 2023
Consistency and coverage are two core parameters of model fit used by configurational comparative methods (CCMs) of causal inference. Among causal models that perform equally well in other respects (e.g., robustness or compliance with background theories), those with higher consistency and coverage are typically considered preferable. Finding the…
Descriptors: Causal Models, Evaluation Methods, Goodness of Fit, Scores
Parkkinen, Veli-Pekka; Baumgartner, Michael – Sociological Methods & Research, 2023
In recent years, proponents of configurational comparative methods (CCMs) have advanced various dimensions of robustness as instrumental to model selection. But these robustness considerations have not led to computable robustness measures, and they have typically been applied to the analysis of real-life data with unknown underlying causal…
Descriptors: Robustness (Statistics), Comparative Analysis, Causal Models, Models
Elwert, Felix; Pfeffer, Fabian T. – Sociological Methods & Research, 2022
Conventional advice discourages controlling for postoutcome variables in regression analysis. By contrast, we show that controlling for commonly available postoutcome (i.e., future) values of the treatment variable can help detect, reduce, and even remove omitted variable bias (unobserved confounding). The premise is that the same unobserved…
Descriptors: Bias, Regression (Statistics), Evaluation Methods, Research
Weidlich, Joshua; Gaševic, Dragan; Drachsler, Hendrik – Journal of Learning Analytics, 2022
As a research field geared toward understanding and improving learning, Learning Analytics (LA) must be able to provide empirical support for causal claims. However, as a highly applied field, tightly controlled randomized experiments are not always feasible nor desirable. Instead, researchers often rely on observational data, based on which they…
Descriptors: Causal Models, Inferences, Learning Analytics, Comparative Analysis
Troy, Jesse D.; Neely, Megan L.; Pomann, Gina-Maria; Grambow, Steven C.; Samsa, Gregory P. – Journal of Curriculum and Teaching, 2022
Student evaluation is a key consideration for educational program administrators because program success depends on students' ability to demonstrate successful development of core competencies. Student evaluations must therefore be aligned with learning objectives and overall program goals. Graduate level educational programs typically incorporate…
Descriptors: Student Evaluation, Evaluation Methods, Statistics Education, Alignment (Education)
Wing, Coady; Bello-Gomez, Ricardo A. – American Journal of Evaluation, 2018
Treatment effect estimates from a "regression discontinuity design" (RDD) have high internal validity. However, the arguments that support the design apply to a subpopulation that is narrower and usually different from the population of substantive interest in evaluation research. The disconnect between RDD population and the…
Descriptors: Regression (Statistics), Research Design, Validity, Evaluation Methods
Chan, Wendy – Journal of Research on Educational Effectiveness, 2017
Recent methods to improve generalizations from nonrandom samples typically invoke assumptions such as the strong ignorability of sample selection, which is challenging to meet in practice. Although researchers acknowledge the difficulty in meeting this assumption, point estimates are still provided and used without considering alternative…
Descriptors: Generalization, Inferences, Probability, Educational Research
Halpern, Joseph Y.; Hitchcock, Christopher – Cognitive Science, 2013
Judea Pearl (2000) was the first to propose a definition of actual causation using causal models. A number of authors have suggested that an adequate account of actual causation must appeal not only to causal structure but also to considerations of "normality." In Halpern and Hitchcock (2011), we offer a definition of actual causation…
Descriptors: Causal Models, Cognitive Science, Definitions, Correlation
Sloman, Steven A. – Cognitive Science, 2013
Judea Pearl won the 2010 Rumelhart Prize in computational cognitive science due to his seminal contributions to the development of Bayes nets and causal Bayes nets, frameworks that are central to multiple domains of the computational study of mind. At the heart of the causal Bayes nets formalism is the notion of a counterfactual, a representation…
Descriptors: Causal Models, Cognitive Psychology, Cognitive Science, Cognitive Processes
Marcus, Sue M.; Stuart, Elizabeth A.; Wang, Pei; Shadish, William R.; Steiner, Peter M. – Psychological Methods, 2012
Although randomized studies have high internal validity, generalizability of the estimated causal effect from randomized clinical trials to real-world clinical or educational practice may be limited. We consider the implication of randomized assignment to treatment, as compared with choice of preferred treatment as it occurs in real-world…
Descriptors: Educational Practices, Program Effectiveness, Validity, Causal Models
Harvill, Eleanor L.; Peck, Laura R.; Bell, Stephen H. – American Journal of Evaluation, 2013
Using exogenous characteristics to identify endogenous subgroups, the approach discussed in this method note creates symmetric subsets within treatment and control groups, allowing the analysis to take advantage of an experimental design. In order to maintain treatment--control symmetry, however, prior work has posited that it is necessary to use…
Descriptors: Experimental Groups, Control Groups, Research Design, Sampling
Rubin, Donald B. – Psychological Methods, 2010
This article offers reflections on the development of the Rubin causal model (RCM), which were stimulated by the impressive discussions of the RCM and Campbell's superb contributions to the practical problems of drawing causal inferences written by Will Shadish (2010) and Steve West and Felix Thoemmes (2010). It is not a rejoinder in any real…
Descriptors: Causal Models, Research Methodology, Researchers, Profiles
Wong, Manyee; Cook, Thomas D.; Steiner, Peter M. – Journal of Research on Educational Effectiveness, 2015
Some form of a short interrupted time series (ITS) is often used to evaluate state and national programs. An ITS design with a single treatment group assumes that the pretest functional form can be validly estimated and extrapolated into the postintervention period where it provides a valid counterfactual. This assumption is problematic. Ambiguous…
Descriptors: Evaluation Methods, Time, Federal Legislation, Educational Legislation
Cook, Thomas D.; Steiner, Peter M. – Psychological Methods, 2010
In this article, we note the many ontological, epistemological, and methodological similarities between how Campbell and Rubin conceptualize causation. We then explore 3 differences in their written emphases about individual case matching in observational studies. We contend that (a) Campbell places greater emphasis than Rubin on the special role…
Descriptors: Research Methodology, Pretests Posttests, Data Analysis, Evaluation Methods
Riegg, Stephanie K. – Review of Higher Education, 2008
This article highlights the problem of omitted variable bias in research on the causal effect of financial aid on college-going. I first describe the problem of self-selection and the resulting bias from omitted variables. I then assess and explore the strengths and weaknesses of random assignment, multivariate regression, proxy variables, fixed…
Descriptors: Research Methodology, Causal Models, Inferences, Test Bias
Previous Page | Next Page »
Pages: 1 | 2