NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Garret J. Hall; Sophia Putzeys; Thomas R. Kratochwill; Joel R. Levin – Educational Psychology Review, 2024
Single-case experimental designs (SCEDs) have a long history in clinical and educational disciplines. One underdeveloped area in advancing SCED design and analysis is understanding the process of how internal validity threats and operational concerns are avoided or mitigated. Two strategies to ameliorate such issues in SCED involve replication and…
Descriptors: Research Design, Graphs, Case Studies, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Gonzalez-Ocantos, Ezequiel; LaPorte, Jody – Sociological Methods & Research, 2021
Scholars who conduct process tracing often face the problem of missing data. The inability to document key steps in their causal chains makes it difficult to validate theoretical models. In this article, we conceptualize "missingness" as it relates to process tracing, describe different scenarios in which it is pervasive, and present…
Descriptors: Data, Research Problems, Qualitative Research, Causal Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Weidlich, Joshua; Gaševic, Dragan; Drachsler, Hendrik – Journal of Learning Analytics, 2022
As a research field geared toward understanding and improving learning, Learning Analytics (LA) must be able to provide empirical support for causal claims. However, as a highly applied field, tightly controlled randomized experiments are not always feasible nor desirable. Instead, researchers often rely on observational data, based on which they…
Descriptors: Causal Models, Inferences, Learning Analytics, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hasegawa, Raiden B.; Deshpande, Sameer K.; Small, Dylan S.; Rosenbaum, Paul R. – Journal of Educational and Behavioral Statistics, 2020
Causal effects are commonly defined as comparisons of the potential outcomes under treatment and control, but this definition is threatened by the possibility that either the treatment or the control condition is not well defined, existing instead in more than one version. This is often a real possibility in nonexperimental or observational…
Descriptors: Causal Models, Inferences, Randomized Controlled Trials, Experimental Groups
Peer reviewed Peer reviewed
Direct linkDirect link
Wing, Coady; Bello-Gomez, Ricardo A. – American Journal of Evaluation, 2018
Treatment effect estimates from a "regression discontinuity design" (RDD) have high internal validity. However, the arguments that support the design apply to a subpopulation that is narrower and usually different from the population of substantive interest in evaluation research. The disconnect between RDD population and the…
Descriptors: Regression (Statistics), Research Design, Validity, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Connelly, Brian S.; Sackett, Paul R.; Waters, Shonna D. – Personnel Psychology, 2013
Organizational and applied sciences have long struggled with improving causal inference in quasi-experiments. We introduce organizational researchers to propensity scoring, a statistical technique that has become popular in other applied sciences as a means for improving internal validity. Propensity scoring statistically models how individuals in…
Descriptors: Quasiexperimental Design, Control Groups, Inferences, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Graham, Suzanne E. – Journal for Research in Mathematics Education, 2010
Selection bias is a problem for mathematics education researchers interested in using observational rather than experimental data to make causal inferences about the effects of different instructional methods in mathematics on student outcomes. Propensity score methods represent 1 approach to dealing with such selection bias. This article…
Descriptors: Mathematics Education, Mathematics Achievement, Inferences, Mathematics Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Lebow, Richard Ned – History Teacher, 2007
Counterfactuals are routinely used in physical and biological sciences to develop and evaluate sophisticated, non-linear models. They have been used with telling effect in the study of economic history and American politics. For some historians, counterfactual arguments have no scholarly standing. They consider them flights of fancy, fun over a…
Descriptors: Research Tools, Historians, Research Methodology, History