Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 9 |
Since 2006 (last 20 years) | 16 |
Descriptor
Causal Models | 17 |
Inferences | 17 |
Validity | 17 |
Research Design | 7 |
Research Methodology | 5 |
Comparative Analysis | 4 |
Educational Research | 4 |
Evaluation Methods | 4 |
Graphs | 3 |
Research Problems | 3 |
Abstract Reasoning | 2 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 16 |
Reports - Descriptive | 6 |
Reports - Evaluative | 5 |
Reports - Research | 5 |
Opinion Papers | 2 |
Information Analyses | 1 |
Education Level
Higher Education | 3 |
Postsecondary Education | 2 |
Audience
Researchers | 3 |
Location
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Kylie Anglin; Qing Liu; Vivian C. Wong – Asia Pacific Education Review, 2024
Given decision-makers often prioritize causal research that identifies the impact of treatments on the people they serve, a key question in education research is, "Does it work?". Today, however, researchers are paying increasing attention to successive questions that are equally important from a practical standpoint--not only does it…
Descriptors: Educational Research, Program Evaluation, Validity, Classification
Garret J. Hall; Sophia Putzeys; Thomas R. Kratochwill; Joel R. Levin – Educational Psychology Review, 2024
Single-case experimental designs (SCEDs) have a long history in clinical and educational disciplines. One underdeveloped area in advancing SCED design and analysis is understanding the process of how internal validity threats and operational concerns are avoided or mitigated. Two strategies to ameliorate such issues in SCED involve replication and…
Descriptors: Research Design, Graphs, Case Studies, Validity
Fansher, Madison; Adkins, Tyler J.; Shah, Priti – Grantee Submission, 2022
Media articles often communicate the latest scientific findings, and readers must evaluate the evidence and consider its potential implications. Prior work has found that the inclusion of graphs makes messages about scientific data more persuasive (Tal & Wansink, 2016). One explanation for this finding is that such visualizations evoke the…
Descriptors: Graphs, Correlation, Visual Aids, News Reporting
Kylie Anglin – Society for Research on Educational Effectiveness, 2022
Background: For decades, education researchers have relied on the work of Campbell, Cook, and Shadish to help guide their thinking about valid impact estimates in the social sciences (Campbell & Stanley, 1963; Shadish et al., 2002). The foundation of this work is the "validity typology" and its associated "threats to…
Descriptors: Artificial Intelligence, Educational Technology, Technology Uses in Education, Validity
Weidlich, Joshua; Gaševic, Dragan; Drachsler, Hendrik – Journal of Learning Analytics, 2022
As a research field geared toward understanding and improving learning, Learning Analytics (LA) must be able to provide empirical support for causal claims. However, as a highly applied field, tightly controlled randomized experiments are not always feasible nor desirable. Instead, researchers often rely on observational data, based on which they…
Descriptors: Causal Models, Inferences, Learning Analytics, Comparative Analysis
Joyce, Kathryn E. – Educational Research and Evaluation, 2019
Within evidence-based education, results from randomised controlled trials (RCTs), and meta-analyses of them, are taken as reliable evidence for effectiveness -- they speak to "what works". Extending RCT results requires establishing that study samples and settings are representative of the intended target. Although widely recognised as…
Descriptors: Evidence Based Practice, Educational Research, Instructional Effectiveness, Randomized Controlled Trials
Mack, Michael R.; Hensen, Cory; Barbera, Jack – Journal of Chemical Education, 2019
Quasi-experiments are common in studies that estimate the effect of instructional interventions on student performance outcomes. In this type of research, the nature of the experimental design, the choice in assessment, the selection of comparison groups, and the statistical methods used to analyze the comparison data dictate the validity of…
Descriptors: Science Instruction, Comparative Analysis, Inferences, Validity
Wing, Coady; Bello-Gomez, Ricardo A. – American Journal of Evaluation, 2018
Treatment effect estimates from a "regression discontinuity design" (RDD) have high internal validity. However, the arguments that support the design apply to a subpopulation that is narrower and usually different from the population of substantive interest in evaluation research. The disconnect between RDD population and the…
Descriptors: Regression (Statistics), Research Design, Validity, Evaluation Methods
Morishima, Yasunori – Journal of Psycholinguistic Research, 2016
The validation model of causal bridging inferences proposed by Singer and colleagues (e.g., Singer in "Can J Exp Psychol," 47(2):340-359, 1993) claims that before a causal bridging inference is accepted, it must be validated by existing knowledge. For example, to understand "Dorothy took the aspirins. Her pain went away," one…
Descriptors: Reading Comprehension, Inferences, Rhetoric, Causal Models
Elqayam, Shira; Thompson, Valerie A.; Wilkinson, Meredith R.; Evans, Jonathan St. B. T.; Over, David E. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
Humans have a unique ability to generate novel norms. Faced with the knowledge that there are hungry children in Somalia, we easily and naturally infer that we ought to donate to famine relief charities. Although a contentious and lively issue in metaethics, such inference from "is" to "ought" has not been systematically…
Descriptors: Inferences, Abstract Reasoning, Logical Thinking, Experiments
Marcus, Sue M.; Stuart, Elizabeth A.; Wang, Pei; Shadish, William R.; Steiner, Peter M. – Psychological Methods, 2012
Although randomized studies have high internal validity, generalizability of the estimated causal effect from randomized clinical trials to real-world clinical or educational practice may be limited. We consider the implication of randomized assignment to treatment, as compared with choice of preferred treatment as it occurs in real-world…
Descriptors: Educational Practices, Program Effectiveness, Validity, Causal Models
Lund, Thorleif – Scandinavian Journal of Educational Research, 2010
The purpose of the present paper is to critically examine causal inferences and internal validity as defined by Campbell and co-workers. Several arguments are given against their counterfactual effect definition, and this effect definition should be considered inadequate for causal research in general. Moreover, their defined independence between…
Descriptors: Construct Validity, Validity, Statistical Inference, Inferences
West, Stephen G.; Thoemmes, Felix – Psychological Methods, 2010
Donald Campbell's approach to causal inference (D. T. Campbell, 1957; W. R. Shadish, T. D. Cook, & D. T. Campbell, 2002) is widely used in psychology and education, whereas Donald Rubin's causal model (P. W. Holland, 1986; D. B. Rubin, 1974, 2005) is widely used in economics, statistics, medicine, and public health. Campbell's approach focuses on…
Descriptors: Causal Models, Research Methodology, Validity, Inferences
Imbens, Guido W. – Psychological Methods, 2010
In Shadish (2010) and West and Thoemmes (2010), the authors contrasted 2 approaches to causality. The first originated in the psychology literature and is associated with work by Campbell (e.g., Shadish, Cook, & Campbell, 2002), and the second has its roots in the statistics literature and is associated with work by Rubin (e.g., Rubin, 2006). In…
Descriptors: Economics, Research Methodology, Causal Models, Inferences
Shadish, William R. – Psychological Methods, 2010
This article compares Donald Campbell's and Donald Rubin's work on causal inference in field settings on issues of epistemology, theories of cause and effect, methodology, statistics, generalization, and terminology. The two approaches are quite different but compatible, differing mostly in matters of bandwidth versus fidelity. Campbell's work…
Descriptors: Inferences, Generalization, Epistemology, Causal Models
Previous Page | Next Page »
Pages: 1 | 2