NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive…1
What Works Clearinghouse Rating
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Ghadeer Sawalha; Imran Taj; Abdulhadi Shoufan – Cogent Education, 2024
Large language models present new opportunities for teaching and learning. The response accuracy of these models, however, is believed to depend on the prompt quality which can be a challenge for students. In this study, we aimed to explore how undergraduate students use ChatGPT for problem-solving, what prompting strategies they develop, the link…
Descriptors: Cues, Artificial Intelligence, Natural Language Processing, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Silva, Valtemir A.; Bittencourt, Ig Ibert; Maldonado, Jose C. – IEEE Transactions on Learning Technologies, 2019
Question classification is a key point in many applications, such as Question Answering (QA, e.g., Yahoo! Answers), Information Retrieval (IR, e.g., Google search engine), and E-learning systems (e.g., Bloom's tax. classifiers). This paper aims to carry out a systematic review of the literature on automatic question classifiers and the technology…
Descriptors: Questioning Techniques, Classification, Man Machine Systems, Information Retrieval
Crossley, Scott; McNamara, Danielle S.; Baker, Ryan; Wang, Yuan; Paquette, Luc; Barnes, Tiffany; Bergner, Yoav – International Educational Data Mining Society, 2015
Completion rates for massive open online classes (MOOCs) are notoriously low, but learner intent is an important factor. By studying students who drop out despite their intent to complete the MOOC, it may be possible to develop interventions to improve retention and learning outcomes. Previous research into predicting MOOC completion has focused…
Descriptors: Online Courses, Large Group Instruction, Information Retrieval, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ezen-Can, Aysu; Boyer, Kristy Elizabeth – Journal of Educational Data Mining, 2015
Within the landscape of educational data, textual natural language is an increasingly vast source of learning-centered interactions. In natural language dialogue, student contributions hold important information about knowledge and goals. Automatically modeling the dialogue act of these student utterances is crucial for scaling natural language…
Descriptors: Classification, Dialogs (Language), Computational Linguistics, Information Retrieval
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries