NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 5 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zareen Alamgir; Habiba Akram; Saira Karim; Aamir Wali – Informatics in Education, 2024
Educational data mining is widely deployed to extract valuable information and patterns from academic data. This research explores new features that can help predict the future performance of undergraduate students and identify at-risk students early on. It answers some crucial and intuitive questions that are not addressed by previous studies.…
Descriptors: Data Analysis, Information Retrieval, Content Analysis, Information Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pishtari, Gerti; Prieto, Luis P.; Rodriguez-Triana, Maria Jesus; Martinez-Maldonado, Roberto – Journal of Learning Analytics, 2022
This research was triggered by the identified need in literature for large-scale studies about the kinds of designs that teachers create for mobile learning (m-learning). These studies require analyses of large datasets of learning designs. The common approach followed by researchers when analyzing designs has been to manually classify them…
Descriptors: Scaling, Classification, Context Effect, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Wells, Jason; Spence, Aaron; McKenzie, Sophie – Journal of Information Technology Education: Research, 2021
Aim/Purpose: This paper focuses on understanding undergraduate computing student-learning behaviour through reviewing their online activity in a university online learning management system (LMS), along with their grade outcome, across three subjects. A specific focus is on the activity of students who failed the computing subjects. Background:…
Descriptors: Student Participation, Undergraduate Students, At Risk Students, Academic Failure
Peer reviewed Peer reviewed
Direct linkDirect link
Tlili, Ahmed; Denden, Mouna; Essalmi, Fathi; Jemni, Mohamed; Chang, Maiga; Kinshuk; Chen, Nian-Shing – Interactive Learning Environments, 2023
The ability of automatically modeling learners' personalities is an important step in building adaptive learning environments. Several studies showed that knowing the personality of each learner can make the learning interaction with the provided learning contents and activities within learning systems more effective. However, the traditional…
Descriptors: Learning Analytics, Learning Management Systems, Intelligent Tutoring Systems, Bayesian Statistics