NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Favero, Giacomo; Brugia, Mattia; Mancin, Fabrizio; Bonomi, Renato – Journal of Chemical Education, 2019
In recent years, nanotechnology has been one of the major subjects of scientific and technological research. Currently, several applications of nanotechnologies are already available on the market. Particularly relevant are the fields of new materials and sensors, which have excellent potential future applications in the biomedical field. This…
Descriptors: Chemistry, Molecular Structure, Technology, Science Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Vahedi, Amid; Farnoud, Amir M. – Journal of Chemical Education, 2019
The increasing industrial and biomedical applications of nanomaterials have enhanced the need to educate a well-trained nanotechnology workforce. This need has led to efforts to introduce hands-on, nanotechnology-based, experimental modules into high school and college level courses in science and engineering. However, the majority of such efforts…
Descriptors: Chemical Engineering, Science Instruction, Molecular Structure, Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Newman, Karla – Journal of Chemical Education, 2018
Almost all commercial quadrupole ICP-MS instruments use collision/reaction cells to either attenuate spectral interferences or shift the analyte of interest to an interference-free "m/z" (e.g., by O addition). A laboratory practical was developed to introduce the students to the basic operating principles of ICP-MS using a hands-on…
Descriptors: Molecular Structure, Spectroscopy, College Science, Laboratory Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Enlow, Jessica L.; Marin, Dawn M.; Walter, Michael G. – Journal of Chemical Education, 2017
To improve polymer education for 9-12 and undergraduate students, a plastic electronics laboratory kit using polymer semiconductors has been developed. The three-module kit and curriculum use polymer semiconductors to provide hands-on inquiry activities with overlapping themes of electrical conductivity, light emission, and light-harvesting solar…
Descriptors: STEM Education, Electronics, Hands on Science, Inquiry
Peer reviewed Peer reviewed
Direct linkDirect link
Popova, Maia; Bretz, Stacey Lowery; Hartley, C. Scott – Journal of Chemical Education, 2016
Although stereochemistry is an important topic in second-year undergraduate organic chemistry, there are limited options for laboratory activities that allow direct visualization of macroscopic chiral phenomena. A novel, guided-inquiry experiment was developed that allows students to explore chirality in the context of cholesteric liquid crystals.…
Descriptors: Visualization, Molecular Structure, Teaching Methods, Organic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Parsons, Christopher J.; Salaita, Meisa K.; Hughes, Catherine H.; Lynn, David G.; Fristoe, Adam; Fristoe, Ariel; Grover, Martha A. – Journal of Chemical Education, 2017
"Group Intelligence" is an active learning, inquiry-based activity that introduces prebiotic chemistry, emergent complexity, and diversity's importance to adaptability across scales. Students explore the molecular emergence of order and function through theatrical exercises and games. Through 20 min of audio instruction and a discussion…
Descriptors: Biochemistry, Active Learning, Inquiry, Molecular Biology
Peer reviewed Peer reviewed
Direct linkDirect link
Hegedus, Tess; Segarra, VerĂ³nica A.; Allen, Tawannah G.; Wilson, Hillary; Garr, Casey; Budzinski, Christina – Science Teacher, 2016
The authors developed an integrated science-and-art program to engage science students from a performing arts high school in hands-on, inquiry based lab experiences. The students participated in eight biology-focused investigations at a local university with undergraduate mentors. After the laboratory phase of the project, the high school students…
Descriptors: Investigations, Extracurricular Activities, Art Education, Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Bridgeman, Adam J.; Schmidt, Timothy W.; Young, Nigel A. – Journal of Chemical Education, 2013
The stretching modes of ML[subscript "x"] complexes have the same symmetry as the atomic orbitals on M that are used to form its s bonds. In the exercise suggested here, the atomic orbitals are used to derive the form of the stretching modes without the need for formal group theory. The analogy allows students to help understand many…
Descriptors: College Science, Science Instruction, Undergraduate Study, Inorganic Chemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L. – Journal of Chemical Education, 2012
A concerted effort has been made to increase the opportunities for undergraduate students to address scientific problems employing the processes used by practicing chemists. As part of this effort, an infrared (IR) spectroscopy and molecular modeling experiment was developed for the first-year general chemistry laboratory course. In the…
Descriptors: Chemistry, Spectroscopy, Scientific Concepts, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki – Journal of Chemical Education, 2013
A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…
Descriptors: Science Instruction, Chemistry, College Science, Thermodynamics
Peer reviewed Peer reviewed
Direct linkDirect link
Warfa, Abdi-Rizak M.; Roehrig, Gillian H.; Schneider, Jamie L.; Nyachwaya, James – Chemistry Education Research and Practice, 2014
A significant body of the literature in science education examines students' conceptions of the dissolution of ionic solids in water, often showing that students lack proper understanding of the particulate nature of dissolving materials as well as holding numerous misconceptions about the dissolution process. Consequently, chemical educators have…
Descriptors: Chemistry, Science Instruction, Classroom Communication, Computer Peripherals
Peer reviewed Peer reviewed
Direct linkDirect link
Cullen, Deanna M.; Pentecost, Thomas C. – Journal of Chemical Education, 2011
In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…
Descriptors: Science Laboratories, Inquiry, Energy, Prior Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Herricks, Susan – Science Scope, 2007
A local middle school requested that the Water Center of Advanced Materials for Purification of Water With Systems (WaterCAMPWS), a National Science Foundation Science and Technology Center, provide an introduction to pH for their seventh-grade water-based service learning class. After sorting through a multitude of information about pH, a…
Descriptors: Science Laboratories, Service Learning, Journal Writing, Social Studies