NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 57 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Weng, Xiaojing; Ng, Oi-Lam; Cui, Zhihao; Leung, Suzannie – Journal of Educational Computing Research, 2023
Creativity, one of the cornerstones of students' 21st-century skills, is regarded as an important learning outcome of science, technology, engineering, arts, and mathematics (STEAM) education. Meanwhile, problem-based digital making (DM), which combines the child-friendly programming activities of DM with problem-solving elements, is an emerging…
Descriptors: Creativity, Creative Development, 21st Century Skills, Problem Based Learning
Jeff Bender – ProQuest LLC, 2023
At an unrivaled and enduring pace, computing has transformed the world, resulting in demand for a universal fourth foundation beyond reading, writing, and arithmetic: computational thinking (CT). Despite increasingly widespread acceptance of CT as a crucial competency for all, transforming education systems accordingly has proven complex. The…
Descriptors: Addictive Behavior, Game Based Learning, Evaluation Methods, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Lakshminarayanan, Srinivasan; Rao, N. J. – Cogent Education, 2021
CS1 courses are designed in Indian Institutions as a lecture course of three to four credits and one credit lab course. The issues related to curriculum design, instruction design, and students' learning manifest themselves as issues in the lab programs. This situation presents the lab instructor with an opportunity to understand and address the…
Descriptors: Computer Science Education, Teaching Methods, Programming, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Umar Alkafaween; Ibrahim Albluwi; Paul Denny – Journal of Computer Assisted Learning, 2025
Background: Automatically graded programming assignments provide instant feedback to students and significantly reduce manual grading time for instructors. However, creating comprehensive suites of test cases for programming problems within automatic graders can be time-consuming and complex. The effort needed to define test suites may deter some…
Descriptors: Automation, Grading, Introductory Courses, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Shin, Yoonhee; Song, Donggil – Journal of Educational Computing Research, 2022
This study explores the effect of self-regulated learning support on learners' cognitive load and problem-solving performance, considering cases from well-structured to ill-structured tasks in a computer programing course. Sixty-seven undergraduate students in a computer programing fundamentals course were randomly assigned into one of two groups:…
Descriptors: Cognitive Ability, Computer Science Education, Programming, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sbaraglia, Marco; Lodi, Michael; Martini, Simone – Informatics in Education, 2021
Introductory programming courses (CS1) are difficult for novices. Inspired by "Problem solving followed by instruction" and "Productive Failure" approaches, we define an original "necessity-driven" learning design. Students are put in an apparently well-known situation, but this time they miss an essential ingredient…
Descriptors: Programming, Introductory Courses, Computer Science Education, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Flores, Rejeenald M.; Rodrigo, Ma. Mercedes T. – Journal of Educational Computing Research, 2020
Wheel-spinning refers to the failure to master a skill in a timely manner or after a considerable number of practice opportunities. Several past studies have developed wheel-spinning models in the areas of Mathematics and Physics. However, no models have been made for the context of novice programming. The purpose of this study was to develop…
Descriptors: Mastery Learning, Novices, Programming, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Akkaya, Ali; Akpinar, Yavuz – Computer Science Education, 2022
Background and Context: Though still a nascent area of research, serious games have been presented as means of engaging students in computer programming and computational thinking due to their immersive and interactive nature. Existing research is limited in its ability to provide systems based on sound instructional design models, and only a few…
Descriptors: Experiential Learning, Educational Games, Instructional Design, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Haipeng Wan; Xue Zhang; Xinxue Yang; Shan Li – Education and Information Technologies, 2024
This study investigated the impact of problematization-oriented scaffolding and structuring-oriented scaffolding, incorporated within instructional videos, on students' computational thinking and their performance in programming education. We recruited 86 participants from three senior classes at a high school. Each of the three classes was…
Descriptors: Scaffolding (Teaching Technique), Instructional Design, Thinking Skills, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Su, Jiahong; Yang, Weipeng; Li, Hui – Journal of Research in Childhood Education, 2023
Coding (or computer programming) helps equip children with an intellectual structure that is valuable for their lifelong learning and development. The proliferation of innovative coding platforms, especially screen-free programmable robotics, has made it possible for coding to be integrated into early childhood education (ECE). However, how the…
Descriptors: Coding, Programming, Early Childhood Education, Instructional Design
Peer reviewed Peer reviewed
Direct linkDirect link
Mangaroska, Katerina; Sharma, Kshitij; Gaševic, Dragan; Giannakos, Michail – Journal of Computer Assisted Learning, 2022
Background: Problem-solving is a multidimensional and dynamic process that requires and interlinks cognitive, metacognitive, and affective dimensions of learning. However, current approaches practiced in computing education research (CER) are not sufficient to capture information beyond the basic programming process data (i.e., IDE-log data).…
Descriptors: Cognitive Processes, Psychological Patterns, Problem Solving, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Remshagen, Anja; Huett, Kim C. – TechTrends: Linking Research and Practice to Improve Learning, 2023
As schools endeavor to provide all students with access to computational thinking and computer science, the hackathon emerges as a competitive and high-energy event that uses authentic problems to motivate learners to engage in the domain of computing. This article presents the design case of a hackathon for teenagers as enacted over five…
Descriptors: Adolescents, Computer Software, Group Activities, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Chung, Cheng-Yu; Awad, Nayif; Hsiao, I-Han – Australasian Journal of Educational Technology, 2021
Although numerous studies have demonstrated different ways that augmented reality (AR) can assist students to understand the learning content via contextualised visualisation, less explored is its effect on collaborative problem-solving (CPS) in computer programming. This study aims to investigate how AR affects a CPS in a programming task. We…
Descriptors: Problem Solving, Problem Based Learning, Cooperative Learning, Computer Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Güney, Zafer – International Journal of Progressive Education, 2019
The need for methods, techniques and approaches that we can develop high-level thinking skills in important activities increases day by day in order to achieve effective use of technology and change in information and communication technologies. In particular, the diversity, complexity of technical skills and to gain technical skills required to…
Descriptors: Instructional Design, Models, Programming, Thinking Skills
Peer reviewed Peer reviewed
Direct linkDirect link
Hutchins, Nicole M.; Biswas, Gautam; Zhang, Ningyu; Snyder, Caitlin; Lédeczi, Ákos; Maróti, Miklós – International Journal of Artificial Intelligence in Education, 2020
Driven by our technologically advanced workplaces and the surge in demand for proficiency in the computing disciplines, it is becoming imperative to provide computational thinking (CT) opportunities to all students. One approach for making computing accessible and relevant to learning and problem-solving in K-12 environments is to integrate it…
Descriptors: Computer Assisted Instruction, Problem Solving, Computation, Thinking Skills
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4