NotesFAQContact Us
Collection
Advanced
Search Tips
Showing 1 to 15 of 18 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sanz Ausin, Markel; Maniktala, Mehak; Barnes, Tiffany; Chi, Min – International Journal of Artificial Intelligence in Education, 2023
While Reinforcement learning (RL), especially Deep RL (DRL), has shown outstanding performance in video games, little evidence has shown that DRL can be successfully applied to human-centric tasks where the ultimate RL goal is to make the "human-agent interactions" productive and fruitful. In real-life, complex, human-centric tasks, such…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Teaching Methods, Learning Activities
Peer reviewed Peer reviewed
Direct linkDirect link
Zhou, Guojing; Azizsoltani, Hamoon; Ausin, Markel Sanz; Barnes, Tiffany; Chi, Min – International Journal of Artificial Intelligence in Education, 2022
In interactive e-learning environments such as Intelligent Tutoring Systems, pedagogical decisions can be made at different levels of granularity. In this work, we focus on making decisions at "two levels": whole problems vs. single steps and explore three types of granularity: "problem-level only" ("Prob-Only"),…
Descriptors: Electronic Learning, Intelligent Tutoring Systems, Decision Making, Problem Solving
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shabrina, Preya; Mostafavi, Behrooz; Tithi, Sutapa Dey; Chi, Min; Barnes, Tiffany – International Educational Data Mining Society, 2023
Problem decomposition into sub-problems or subgoals and recomposition of the solutions to the subgoals into one complete solution is a common strategy to reduce difficulties in structured problem solving. In this study, we use a datadriven graph-mining-based method to decompose historical student solutions of logic-proof problems into Chunks. We…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Graphs, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Cody, Christa; Maniktala, Mehak; Lytle, Nicholas; Chi, Min; Barnes, Tiffany – International Journal of Artificial Intelligence in Education, 2022
Research has shown assistance can provide many benefits to novices lacking the mental models needed for problem solving in a new domain. However, varying approaches to assistance, such as subgoals and next-step hints, have been implemented with mixed results. Next-Step hints are common in data-driven tutors due to their straightforward generation…
Descriptors: Comparative Analysis, Prior Learning, Intelligent Tutoring Systems, Problem Solving
Peer reviewed Peer reviewed
Direct linkDirect link
Maniktala, Mehak; Cody, Christa; Barnes, Tiffany; Chi, Min – International Journal of Artificial Intelligence in Education, 2020
Within intelligent tutoring systems, considerable research has investigated hints, including how to generate data-driven hints, what hint content to present, and when to provide hints for optimal learning outcomes. However, less attention has been paid to "how" hints are presented. In this paper, we propose a new hint delivery mechanism…
Descriptors: Intelligent Tutoring Systems, Cues, Computer Interfaces, Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ju, Song; Zhou, Guojing; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2020
Identifying critical decisions is one of the most challenging decision-making problems in real-world applications. In this work, we propose a novel Reinforcement Learning (RL) based Long-Short Term Rewards (LSTR) framework for critical decisions identification. RL is a machine learning area concerning with inducing effective decision-making…
Descriptors: Decision Making, Reinforcement, Artificial Intelligence, Man Machine Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maniktala, Mehak; Cody, Christa; Isvik, Amy; Lytle, Nicholas; Chi, Min; Barnes, Tiffany – Journal of Educational Data Mining, 2020
Determining "when" and "whether" to provide personalized support is a well-known challenge called the assistance dilemma. A core problem in solving the assistance dilemma is the need to discover when students are unproductive so that the tutor can intervene. Such a task is particularly challenging for open-ended domains, even…
Descriptors: Intelligent Tutoring Systems, Problem Solving, Helping Relationship, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Marwan, Samiha; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2020
Modeling student learning processes is highly complex since it is influenced by many factors such as motivation and learning habits. The high volume of features and tools provided by computer-based learning environments confounds the task of tracking student knowledge even further. Deep Learning models such as Long-Short Term Memory (LSTMs) and…
Descriptors: Time, Models, Artificial Intelligence, Bayesian Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ausin, Markel Sanz; Azizsoltani, Hamoon; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Deep Reinforcement Learning (DRL) has been shown to be a very powerful technique in recent years on a wide range of applications. Much of the prior DRL work took the "online" learning approach. However, given the challenges of building accurate simulations for modeling student learning, we investigated applying DRL to induce a…
Descriptors: Reinforcement, Intelligent Tutoring Systems, Teaching Methods, Instructional Effectiveness
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Shitian; Chi, Min – International Educational Data Mining Society, 2016
We explored a series of feature selection methods for model-based Reinforcement Learning (RL). More specifically, we explored four common correlation metrics and based on them, we proposed the fifth one named Weighed Information Gain (WIG). While much existing correlation-based feature selection methods mostly explored high correlation by default,…
Descriptors: Correlation, Selection, Methods, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhang, Yuan; Shah, Rajat; Chi, Min – International Educational Data Mining Society, 2016
In this work we tackled the task of Automatic Short Answer Grading (ASAG). While conventional ASAG research makes prediction mainly based on student answers referred as Answer-based, we leveraged the information about questions and student models into consideration. More specifically, we explore the Answer-based, Question, and Student models…
Descriptors: Automation, Grading, Artificial Intelligence, Test Format
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Shitian; Chi, Min – International Educational Data Mining Society, 2017
One of the most challenging tasks in the field of Educational Data Mining (EDM) is to cluster students directly based on system-student sequential moment-to-moment interactive trajectories. The objective of this study is to build a general temporal clustering framework that captures the distinct characteristics of students' sequential behaviors…
Descriptors: Sequential Approach, Cluster Grouping, Interaction, Student Behavior
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Lin, Chen; Chi, Min – Journal of Educational Data Mining, 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling…
Descriptors: Prediction, Pretests Posttests, Bayesian Statistics, Short Term Memory
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shen, Shitian; Mostafavi, Behrooz; Barnes, Tiffany; Chi, Min – Journal of Educational Data Mining, 2018
An important goal in the design and development of Intelligent Tutoring Systems (ITSs) is to have a system that adaptively reacts to students' behavior in the short term and effectively improves their learning performance in the long term. Inducing effective pedagogical strategies that accomplish this goal is an essential challenge. To address…
Descriptors: Teaching Methods, Markov Processes, Decision Making, Rewards
Previous Page | Next Page ยป
Pages: 1  |  2