Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 10 |
Since 2006 (last 20 years) | 15 |
Descriptor
Source
Author
VanLehn, Kurt | 19 |
Wetzel, Jon | 6 |
Graesser, Arthur C. | 3 |
Grover, Sachin | 3 |
Chi, Min | 2 |
Jordan, Pamela | 2 |
Zhang, Lishan | 2 |
van de Sande, Brett | 2 |
Andrasik, Frank | 1 |
Baer, Whitney | 1 |
Banerjee, Chandrani | 1 |
More ▼ |
Publication Type
Journal Articles | 18 |
Reports - Research | 10 |
Reports - Descriptive | 6 |
Reports - Evaluative | 3 |
Information Analyses | 1 |
Speeches/Meeting Papers | 1 |
Education Level
Higher Education | 7 |
High Schools | 3 |
Postsecondary Education | 3 |
Secondary Education | 3 |
Elementary Secondary Education | 1 |
Junior High Schools | 1 |
Middle Schools | 1 |
Audience
Location
Arizona | 2 |
California | 1 |
Massachusetts | 1 |
Pennsylvania | 1 |
Tennessee (Memphis) | 1 |
United Kingdom (Nottingham) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
VanLehn, Kurt; Banerjee, Chandrani; Milner, Fabio; Wetzel, Jon – International Journal of Artificial Intelligence in Education, 2020
An algebraic model uses a set of algebra equations to precisely describe a situation. Constructing such models is a fundamental skill required by US standards for both math and science. It is usually taught with algebra word problems. However, many students still lack the skill, even after taking several algebra courses in high school and college.…
Descriptors: Mathematics Instruction, Algebra, Mathematical Models, Equations (Mathematics)
VanLehn, Kurt; Burkhardt, Hugh; Cheema, Salman; Kang, Seokmin; Pead, Daniel; Schoenfeld, Alan; Wetzel, Jon – Interactive Learning Environments, 2021
Mathematics is often taught by explaining an idea, then giving students practice in applying it. Tutoring systems can increase the effectiveness of this method by monitoring the students' practice and giving feedback. However, math can also be taught by having students work collaboratively on problems that lead them to discover the idea. Here,…
Descriptors: Intelligent Tutoring Systems, Cooperative Learning, Mathematics Instruction, Instructional Effectiveness
Graesser, Arthur C.; Hu, Xiangen; Nye, Benjamin D.; VanLehn, Kurt; Kumar, Rohit; Heffernan, Cristina; Heffernan, Neil; Woolf, Beverly; Olney, Andrew M.; Rus, Vasile; Andrasik, Frank; Pavlik, Philip; Cai, Zhiqiang; Wetzel, Jon; Morgan, Brent; Hampton, Andrew J.; Lippert, Anne M.; Wang, Lijia; Cheng, Qinyu; Vinson, Joseph E.; Kelly, Craig N.; McGlown, Cadarrius; Majmudar, Charvi A.; Morshed, Bashir; Baer, Whitney – International Journal of STEM Education, 2018
Background: The Office of Naval Research (ONR) organized a STEM Challenge initiative to explore how intelligent tutoring systems (ITSs) can be developed in a reasonable amount of time to help students learn STEM topics. This competitive initiative sponsored four teams that separately developed systems that covered topics in mathematics,…
Descriptors: Intelligent Tutoring Systems, STEM Education, Electronics, Integrated Curriculum
VanLehn, Kurt – International Journal of Artificial Intelligence in Education, 2016
This commentary suggests a generalization of the conception of the behavior of tutoring systems, which the target article characterized as having an outer loop that was executed once per task and an inner loop that was executed once per step of the task. A more general conception sees these two loops as instances of regulative loops, which…
Descriptors: Intelligent Tutoring Systems, Educational Technology, Technology Uses in Education, Performance
VanLehn, Kurt – International Journal of Artificial Intelligence in Education, 2016
Although the Andes project produced many results over its 18 years of activity, this commentary focuses on its contributions to understanding how a goal-free user interface impacts the overall design and performance of a step-based tutoring system. Whereas a goal-aligned user interface displays relevant goals as blank boxes or empty locations that…
Descriptors: Computer Interfaces, Intelligent Tutoring Systems, Technology Uses in Education, Performance
Wetzel, Jon; VanLehn, Kurt; Butler, Dillan; Chaudhari, Pradeep; Desai, Avaneesh; Feng, Jingxian; Grover, Sachin; Joiner, Reid; Kong-Sivert, Mackenzie; Patade, Vallabh; Samala, Ritesh; Tiwari, Megha; van de Sande, Brett – Interactive Learning Environments, 2017
This paper describes Dragoon, a simple intelligent tutoring system which teaches the construction of models of dynamic systems. Modelling is one of seven practices dictated in two new sets of educational standards in the U.S.A., and Dragoon is one of the first systems for teaching model construction for dynamic systems. Dragoon can be classified…
Descriptors: Intelligent Tutoring Systems, Models, Computer Interfaces, Comparative Analysis
VanLehn, Kurt; Wetzel, Jon; Grover, Sachin; van de Sande, Brett – IEEE Transactions on Learning Technologies, 2017
Constructing models of dynamic systems is an important skill in both mathematics and science instruction. However, it has proved difficult to teach. Dragoon is an intelligent tutoring system intended to quickly and effectively teach this important skill. This paper describes Dragoon and an evaluation of it. The evaluation randomly assigned…
Descriptors: Intelligent Tutoring Systems, Educational Technology, Technology Uses in Education, Skill Development
VanLehn, Kurt; Chung, Greg; Grover, Sachin; Madni, Ayesha; Wetzel, Jon – International Journal of Artificial Intelligence in Education, 2016
A common hypothesis is that students will more deeply understand dynamic systems and other complex phenomena if they construct computational models of them. Attempts to demonstrate the advantages of model construction have been stymied by the long time required for students to acquire skill in model construction. In order to make model…
Descriptors: Models, Science Instruction, Intelligent Tutoring Systems, Teaching Methods
VanLehn, Kurt; Zhang, Lishan; Burleson, Winslow; Girard, Sylvie; Hidago-Pontet, Yoalli – IEEE Transactions on Learning Technologies, 2017
This project aimed to improve students' learning and task performance using a non-cognitive learning companion in the context of both a tutor and a meta-tutor. The tutor taught students how to construct models of dynamic systems and the meta-tutor taught students a learning strategy. The non-cognitive learning companion was designed to increase…
Descriptors: Metacognition, Learning Strategies, Nonverbal Communication, High School Students
Zhang, Lishan; VanLehn, Kurt – Interactive Learning Environments, 2017
The paper describes a biology tutoring system with adaptive question selection. Questions were selected for presentation to the student based on their utilities, which were estimated from the chance that the student's competence would increase if the questions were asked. Competence was represented by the probability of mastery of a set of biology…
Descriptors: Biology, Science Instruction, Intelligent Tutoring Systems, Probability
VanLehn, Kurt – Educational Psychologist, 2011
This article is a review of experiments comparing the effectiveness of human tutoring, computer tutoring, and no tutoring. "No tutoring" refers to instruction that teaches the same content without tutoring. The computer tutoring systems were divided by their granularity of the user interface interaction into answer-based, step-based, and…
Descriptors: Intelligent Tutoring Systems, Interaction, Effect Size, Tutoring
Chi, Min; VanLehn, Kurt; Litman, Diane; Jordan, Pamela – International Journal of Artificial Intelligence in Education, 2011
Pedagogical strategies are policies for a tutor to decide the next action when there are multiple actions available. When the content is controlled to be the same across experimental conditions, there has been little evidence that tutorial decisions have an impact on students' learning. In this paper, we applied Reinforcement Learning (RL) to…
Descriptors: Classroom Communication, Interaction, Reinforcement, Natural Language Processing
Chi, Min; VanLehn, Kurt – Educational Technology & Society, 2010
Certain learners are less sensitive to learning environments and can always learn, while others are more sensitive to variations in learning environments and may fail to learn (Cronbach & Snow, 1977). We refer to the former as high learners and the latter as low learners. One important goal of any learning environment is to bring students up…
Descriptors: Intelligent Tutoring Systems, Physics, Probability, Tutoring
Hausmann, Robert G. M.; VanLehn, Kurt – International Journal of Artificial Intelligence in Education, 2010
Self-explaining is a domain-independent learning strategy that generally leads to a robust understanding of the domain material. However, there are two potential explanations for its effectiveness. First, self-explanation generates additional "content" that does not exist in the instructional materials. Second, when compared to…
Descriptors: Instructional Design, Intelligent Tutoring Systems, College Students, Predictor Variables
Matthews, Danielle E.; VanLehn, Kurt; Graesser, Arthur C.; Jackson, G. Tanner; Jordan, Pamela; Olney, Andrew; Rosa, Andrew Carolyn P. – Cognitive Science, 2007
It is often assumed that engaging in a one-on-one dialogue with a tutor is more effective than listening to a lecture or reading a text. Although earlier experiments have not always supported this hypothesis, this may be due in part to allowing the tutors to cover different content than the noninteractive instruction. In 7 experiments, we tested…
Descriptors: Tutoring, Natural Language Processing, Physics, Computer Assisted Instruction
Previous Page | Next Page »
Pages: 1 | 2