NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Carvalho, Floran; Henriet, Julien; Greffier, Francoise; Betbeder, Marie-Laure; Leon-Henri, Dana – Journal of Education and e-Learning Research, 2023
This research is part of the Artificial Intelligence Virtual Trainer (AI-VT) project which aims to create a system that can identify the user's skills from a text by means of machine learning. AI-VT is a case-based reasoning learning support system can generate customized exercise lists that are specially adapted to user needs. To attain this…
Descriptors: Learning Processes, Algorithms, Artificial Intelligence, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Sebastian Hobert; Florian Berens – Educational Technology Research and Development, 2024
Individualized learning support is an essential part of formal educational learning processes. However, in typical large-scale educational settings, resource constraints result in limited interaction among students, teaching assistants, and lecturers. Due to this, learning success in those settings may suffer. Inspired by current technological…
Descriptors: Individualized Instruction, Intelligent Tutoring Systems, Learning Processes, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Panagiotis Panagiotidis – European Journal of Education (EJED), 2024
Efforts to utilize AI in education, and especially in language education, have their roots in the 60s with the appearance of the first rule-based systems. However, recent advances in Artificial Intelligence (AI) and more specifically the introduction of ChatGPT, have given a new perspective to language learning. The integration of AI, natural…
Descriptors: Artificial Intelligence, Computer Software, Computational Linguistics, Second Language Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Tafazoli, Dara; María, Elena Gómez; Huertas Abril, Cristina A. – International Journal of Information and Communication Technology Education, 2019
Intelligent computer-assisted language learning (ICALL) is a multidisciplinary area of research that combines natural language processing (NLP), intelligent tutoring system (ITS), second language acquisition (SLA), and foreign language teaching and learning (FLTL). Intelligent tutoring systems (ITS) are able to provide a personalized approach to…
Descriptors: Intelligent Tutoring Systems, Computer Assisted Instruction, Teaching Methods, Interdisciplinary Approach
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jordan, Pamela; Albacete, Patricia; Katz, Sandra – Grantee Submission, 2016
We explore the effectiveness of a simple algorithm for adaptively deciding whether to further decompose a step in a line of reasoning during tutorial dialogue. We compare two versions of a tutorial dialogue system, Rimac: one that always decomposes a step to its simplest sub-steps and one that adaptively decides to decompose a step based on a…
Descriptors: Algorithms, Decision Making, Intelligent Tutoring Systems, Scaffolding (Teaching Technique)
McNamara, Danielle S.; Jacovina, Matthew E.; Snow, Erica L.; Allen, Laura K. – Grantee Submission, 2015
Work in cognitive and educational psychology examines a variety of phenomena related to the learning and retrieval of information. Indeed, Alice Healy, our honoree, and her colleagues have conducted a large body of groundbreaking research on this topic. In this article we discuss how 3 learning principles (the generation effect, deliberate…
Descriptors: Learning Processes, Instructional Design, Intelligent Tutoring Systems, Writing Instruction
Lipschultz, Michael; Litman, Diane; Katz, Sandra; Albacete, Patricia; Jordan, Pamela – Grantee Submission, 2014
Post-problem reflective tutorial dialogues between human tutors and students are examined to predict when the tutor changed the level of abstraction from the student's preceding turn (i.e., used more general terms or more specific terms); such changes correlate with learning. Prior work examined lexical changes in abstraction. In this work, we…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Semantics, Abstract Reasoning
Peer reviewed Peer reviewed
Direct linkDirect link
Forbes-Riley, Kate; Litman, Diane – International Journal of Artificial Intelligence in Education, 2013
In this paper we investigate how student disengagement relates to two performance metrics in a spoken dialog computer tutoring corpus, both when disengagement is measured through manual annotation by a trained human judge, and also when disengagement is measured through automatic annotation by the system based on a machine learning model. First,…
Descriptors: Correlation, Learner Engagement, Oral Language, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Craig, Scotty D.; Graesser, Arthur C.; Sullins, Jeremiah; Gholson, Barry – Journal of Educational Media, 2004
The role that affective states play in learning was investigated from the perspective of a constructivist learning framework. We observed six different affect states (frustration, boredom, flow, confusion, eureka and neutral) that potentially occur during the process of learning introductory computer literacy with AutoTutor, an intelligent…
Descriptors: Learning Processes, Natural Language Processing, Correlation, Constructivism (Learning)
Pechenizkiy, Mykola; Calders, Toon; Conati, Cristina; Ventura, Sebastian; Romero, Cristobal; Stamper, John – International Working Group on Educational Data Mining, 2011
The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions…
Descriptors: Academic Achievement, Logical Thinking, Profiles, Tutoring
Peer reviewed Peer reviewed
Direct linkDirect link
Michael, Joel; Rovick, Allen; Glass, Michael; Zhou, Yujian; Evens, Martha – Interactive Learning Environments, 2003
CIRCSIM-Tutor is a computer tutor designed to carry out a natural language dialogue with a medical student. Its domain is the baroreceptor reflex, the part of the cardiovascular system that is responsible for maintaining a constant blood pressure. CIRCSIM-Tutor's interaction with students is modeled after the tutoring behavior of two experienced…
Descriptors: Natural Language Processing, Medical Students, Computer Mediated Communication, Artificial Intelligence
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection