NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aisha Abdulmohsin Al Abdulqader; Amenah Ahmed Al Mulla; Gaida Abdalaziz Al Moheish; Michael Jovellanos Pinero; Conrado Vizcarra; Abdulelah Al Gosaibi; Abdulaziz Saad Albarrak – International Association for Development of the Information Society, 2022
The COVID-19 epidemic had caused one of the most significant disruptions to the global education system. Many educational institutions faced sudden pressure to switch from face-to-face to online delivery of courses. The conventional classes are no longer the primary means of delivery; instead, online education and resources have become the…
Descriptors: COVID-19, Pandemics, Teaching Methods, Online Courses
Allen, Laura K.; Mills, Caitlin; Perret, Cecile; McNamara, Danielle S. – Grantee Submission, 2019
This study examines the extent to which instructions to self-explain vs. "other"-explain a text lead readers to produce different forms of explanations. Natural language processing was used to examine the content and characteristics of the explanations produced as a function of instruction condition. Undergraduate students (n = 146)…
Descriptors: Language Processing, Science Instruction, Computational Linguistics, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Michalenko, Joshua J.; Lan, Andrew S.; Waters, Andrew E.; Grimaldi, Philip J.; Baraniuk, Richard G. – International Educational Data Mining Society, 2017
An important, yet largely unstudied problem in student data analysis is to detect "misconceptions" from students' responses to "open-response" questions. Misconception detection enables instructors to deliver more targeted feedback on the misconceptions exhibited by many students in their class, thus improving the quality of…
Descriptors: Data Analysis, Misconceptions, Student Attitudes, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Dzikovska, Myroslava; Steinhauser, Natalie; Farrow, Elaine; Moore, Johanna; Campbell, Gwendolyn – International Journal of Artificial Intelligence in Education, 2014
Within STEM domains, physics is considered to be one of the most difficult topics to master, in part because many of the underlying principles are counter-intuitive. Effective teaching methods rely on engaging the student in active experimentation and encouraging deep reasoning, often through the use of self-explanation. Supporting such…
Descriptors: Intelligent Tutoring Systems, Electronics, Energy, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Lishan; VanLehn, Kurt – Interactive Learning Environments, 2017
The paper describes a biology tutoring system with adaptive question selection. Questions were selected for presentation to the student based on their utilities, which were estimated from the chance that the student's competence would increase if the questions were asked. Competence was represented by the probability of mastery of a set of biology…
Descriptors: Biology, Science Instruction, Intelligent Tutoring Systems, Probability
Peer reviewed Peer reviewed
Direct linkDirect link
Lintean, Mihai; Rus, Vasile; Azevedo, Roger – International Journal of Artificial Intelligence in Education, 2012
This article describes the problem of detecting the student mental models, i.e. students' knowledge states, during the self-regulatory activity of prior knowledge activation in MetaTutor, an intelligent tutoring system that teaches students self-regulation skills while learning complex science topics. The article presents several approaches to…
Descriptors: Semantics, Intelligent Tutoring Systems, Prior Learning, Mathematics
Katz, Sandra; Jordan, Pamela; Litman, Diane – Society for Research on Educational Effectiveness, 2011
The natural-language tutorial dialogue system that the authors are developing will allow them to focus on the nature of interactivity during tutoring as a malleable factor. Specifically, it will serve as a research platform for studies that manipulate the frequency and types of verbal alignment processes that take place during tutoring, such as…
Descriptors: Natural Language Processing, Physics, Logical Thinking, Intelligent Tutoring Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Forbes-Riley, Kate; Litman, Diane – International Journal of Artificial Intelligence in Education, 2013
In this paper we investigate how student disengagement relates to two performance metrics in a spoken dialog computer tutoring corpus, both when disengagement is measured through manual annotation by a trained human judge, and also when disengagement is measured through automatic annotation by the system based on a machine learning model. First,…
Descriptors: Correlation, Learner Engagement, Oral Language, Computer Assisted Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Katz, Sandra; Albacete, Patricia L. – Journal of Educational Psychology, 2013
For some time, it has been clear that students who are tutored generally learn more than students who experience classroom instruction (e.g., Bloom, 1984). Much research has been devoted to identifying features of tutorial dialogue that can explain its effectiveness, so that these features can be simulated in natural-language tutoring systems. One…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Interaction, Rhetorical Theory
Katz, Sandra; Albacete, Patricia L. – Grantee Submission, 2013
For some time, it has been clear that students who are tutored generally learn more than students who experience classroom instruction (e.g., Bloom, 1984). Much research has been devoted to identifying features of tutorial dialogue that can explain its effectiveness, so that these features can be simulated in natural-language tutoring systems. One…
Descriptors: Rhetorical Theory, Tutoring, Intelligent Tutoring Systems, Secondary School Science
Peer reviewed Peer reviewed
Direct linkDirect link
Kopp, Kristopher J.; Britt, M. Anne; Millis, Keith; Graesser, Arthur C. – Learning and Instruction, 2012
The current studies investigated the efficient use of dialogue in intelligent tutoring systems that use natural language interaction. Such dialogues can be relatively time-consuming. This work addresses the question of how much dialogue is needed to produce significant learning gains. In Experiment 1, a full dialogue condition and a read-only…
Descriptors: Intelligent Tutoring Systems, Natural Language Processing, Computer Mediated Communication, Synchronous Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Chi, Min; VanLehn, Kurt; Litman, Diane; Jordan, Pamela – International Journal of Artificial Intelligence in Education, 2011
Pedagogical strategies are policies for a tutor to decide the next action when there are multiple actions available. When the content is controlled to be the same across experimental conditions, there has been little evidence that tutorial decisions have an impact on students' learning. In this paper, we applied Reinforcement Learning (RL) to…
Descriptors: Classroom Communication, Interaction, Reinforcement, Natural Language Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Matthews, Danielle E.; VanLehn, Kurt; Graesser, Arthur C.; Jackson, G. Tanner; Jordan, Pamela; Olney, Andrew; Rosa, Andrew Carolyn P. – Cognitive Science, 2007
It is often assumed that engaging in a one-on-one dialogue with a tutor is more effective than listening to a lecture or reading a text. Although earlier experiments have not always supported this hypothesis, this may be due in part to allowing the tutors to cover different content than the noninteractive instruction. In 7 experiments, we tested…
Descriptors: Tutoring, Natural Language Processing, Physics, Computer Assisted Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lynch, Collin F., Ed.; Merceron, Agathe, Ed.; Desmarais, Michel, Ed.; Nkambou, Roger, Ed. – International Educational Data Mining Society, 2019
The 12th iteration of the International Conference on Educational Data Mining (EDM 2019) is organized under the auspices of the International Educational Data Mining Society in Montreal, Canada. The theme of this year's conference is EDM in Open-Ended Domains. As EDM has matured it has increasingly been applied to open-ended and ill-defined tasks…
Descriptors: Data Collection, Data Analysis, Information Retrieval, Content Analysis
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection