NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Baneres, David; Rodriguez-Gonzalez, M. Elena; Guerrero-Roldan, Ana Elena – IEEE Transactions on Learning Technologies, 2023
Course dropout is a concern in online higher education, mainly in first-year courses when different factors negatively influence the learners' engagement leading to an unsuccessful outcome or even dropping out from the university. The early identification of such potential at-risk learners is the key to intervening and trying to help them before…
Descriptors: Prediction, Models, Identification, Potential Dropouts
Peer reviewed Peer reviewed
Direct linkDirect link
Qiuyu Zheng; Zengzhao Chen; Mengke Wang; Yawen Shi; Shaohui Chen; Zhi Liu – IEEE Transactions on Learning Technologies, 2024
The rationality and the effectiveness of classroom teaching behavior directly influence the quality of classroom instruction. Analyzing teaching behavior intelligently can provide robust data support for teacher development and teaching supervision. By observing verbal and nonverbal behaviors of teachers in the classroom, valuable data on…
Descriptors: Teacher Behavior, Teacher Student Relationship, Verbal Communication, Nonverbal Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Wan, Han; Liu, Kangxu; Yu, Qiaoye; Gao, Xiaopeng – IEEE Transactions on Learning Technologies, 2019
Most educational institutions adopted the hybrid teaching mode through learning management systems. The logging data/clickstream could describe learners' online behavior. Many researchers have used them to predict students' performance, which has led to a diverse set of findings, but how to use insights from captured data to enhance learning…
Descriptors: Educational Practices, Learner Engagement, Identification, Study Habits
Peer reviewed Peer reviewed
Direct linkDirect link
Mejia, Carolina; Florian, Beatriz; Vatrapu, Ravi; Bull, Susan; Gomez, Sergio; Fabregat, Ramon – IEEE Transactions on Learning Technologies, 2017
Existing tools aim to detect university students with early diagnosis of dyslexia or reading difficulties, but there are not developed tools that let those students better understand some aspects of their difficulties. In this paper, a dashboard for visualizing and inspecting early detected reading difficulties and their characteristics, called…
Descriptors: Clinical Diagnosis, Dyslexia, Visualization, Metacognition