Publication Date
In 2025 | 8 |
Descriptor
Source
Author
Amanda Barany | 1 |
Andres Felipe Zambrano | 1 |
Anqi Xu | 1 |
Ernst Bekkering | 1 |
Haochen Yan | 1 |
Heidi Taveter | 1 |
Ibrahim Albluwi | 1 |
Jaclyn Ocumpaugh | 1 |
Jennifer Xu | 1 |
Jiaqi Liu | 1 |
Jiayi Zhang | 1 |
More ▼ |
Publication Type
Journal Articles | 8 |
Reports - Research | 8 |
Tests/Questionnaires | 2 |
Education Level
Higher Education | 5 |
Postsecondary Education | 5 |
Audience
Location
China | 1 |
Germany (Berlin) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Heidi Taveter; Marina Lepp – Informatics in Education, 2025
Learning programming has become increasingly popular, with learners from diverse backgrounds and experiences requiring different support. Programming-process analysis helps to identify solver types and needs for assistance. The study examined students' behavior patterns in programming among beginners and non-beginners to identify solver types,…
Descriptors: Behavior Patterns, Novices, Expertise, Programming
Umar Alkafaween; Ibrahim Albluwi; Paul Denny – Journal of Computer Assisted Learning, 2025
Background: Automatically graded programming assignments provide instant feedback to students and significantly reduce manual grading time for instructors. However, creating comprehensive suites of test cases for programming problems within automatic graders can be time-consuming and complex. The effort needed to define test suites may deter some…
Descriptors: Automation, Grading, Introductory Courses, Programming
Mark Frydenberg; Anqi Xu; Jennifer Xu – Information Systems Education Journal, 2025
This study explores student perceptions of learning to code by evaluating AI-generated Python code. In an experimental exercise given to students in an introductory Python course at a business university, students wrote their own solutions to a Python program and then compared their solutions with AI-generated code. They evaluated both solutions…
Descriptors: Student Attitudes, Programming, Computer Software, Quality Assurance
Xiner Liu; Andres Felipe Zambrano; Ryan S. Baker; Amanda Barany; Jaclyn Ocumpaugh; Jiayi Zhang; Maciej Pankiewicz; Nidhi Nasiar; Zhanlan Wei – Journal of Learning Analytics, 2025
This study explores the potential of the large language model GPT-4 as an automated tool for qualitative data analysis by educational researchers, exploring which techniques are most successful for different types of constructs. Specifically, we assess three different prompt engineering strategies -- Zero-shot, Few-shot, and Fewshot with…
Descriptors: Coding, Artificial Intelligence, Automation, Data Analysis
Ernst Bekkering – Information Systems Education Journal, 2025
Undergraduate research can stimulate students' interest, especially in STEM disciplines. This research can be formally offered in different formats such as Undergraduate Research Experiences (UREs). One of these is Course-based Undergraduate Research Experiences (CUREs), which are offered as an integral part of scheduled courses. CUREs have been…
Descriptors: Undergraduate Students, Research Training, Computer Science Education, Student Interests
Zhizezhang Gao; Haochen Yan; Jiaqi Liu; Xiao Zhang; Yuxiang Lin; Yingzhi Zhang; Xia Sun; Jun Feng – International Journal of STEM Education, 2025
Background: With the increasing interdisciplinarity between computer science (CS) and other fields, a growing number of non-CS students are embracing programming. However, there is a gap in research concerning differences in programming learning between CS and non-CS students. Previous studies predominantly relied on outcome-based assessments,…
Descriptors: Computer Science Education, Mathematics Education, Novices, Programming
Manuel B. Garcia – Education and Information Technologies, 2025
The global shortage of skilled programmers remains a persistent challenge. High dropout rates in introductory programming courses pose a significant obstacle to graduation. Previous studies highlighted learning difficulties in programming students, but their specific weaknesses remained unclear. This gap exists due to the predominant focus on the…
Descriptors: Programming, Introductory Courses, Computer Science Education, Mastery Learning
Samuel Boguslawski; Rowan Deer; Mark G. Dawson – Information and Learning Sciences, 2025
Purpose: Programming education is being rapidly transformed by generative AI tools and educators must determine how best to support students in this context. This study aims to explore the experiences of programming educators and students to inform future education provision. Design/methodology/approach: Twelve students and six members of faculty…
Descriptors: Programming, Computer Science Education, Personal Autonomy, Learning Motivation