Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 1 |
Since 2006 (last 20 years) | 3 |
Descriptor
Source
Journal of Educational Data… | 3 |
Author
Boyer, Kristy Elizabeth | 1 |
Ezen-Can, Aysu | 1 |
Fan, Aysa Xuemo | 1 |
Malmi, Lauri | 1 |
Paquette, Luc | 1 |
Pinto, Juan D. | 1 |
Taherkhani, Ahmad | 1 |
Zhang, Yingbin | 1 |
Publication Type
Journal Articles | 3 |
Reports - Research | 2 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 2 |
Postsecondary Education | 2 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Zhang, Yingbin; Pinto, Juan D.; Fan, Aysa Xuemo; Paquette, Luc – Journal of Educational Data Mining, 2023
The second CSEDM data challenge aimed at finding innovative methods to use students' programming traces to model their learning. The main challenge of this task is how to decide which past problems are relevant for predicting performance on a future problem. This paper proposes a set of weighting schemes to address this challenge. Specifically,…
Descriptors: Problem Solving, Introductory Courses, Computer Science Education, Programming
Taherkhani, Ahmad; Malmi, Lauri – Journal of Educational Data Mining, 2013
In this paper, we present a method for recognizing algorithms from students programming submissions coded in Java. The method is based on the concept of "programming schemas" and "beacons". Schemas are high-level programming knowledge with detailed knowledge abstracted out, and beacons are statements that imply specific…
Descriptors: Programming, Mathematics, Computer Science Education, Methods
Ezen-Can, Aysu; Boyer, Kristy Elizabeth – Journal of Educational Data Mining, 2015
Within the landscape of educational data, textual natural language is an increasingly vast source of learning-centered interactions. In natural language dialogue, student contributions hold important information about knowledge and goals. Automatically modeling the dialogue act of these student utterances is crucial for scaling natural language…
Descriptors: Classification, Dialogs (Language), Computational Linguistics, Information Retrieval