Publication Date
In 2025 | 1 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 10 |
Since 2016 (last 10 years) | 20 |
Since 2006 (last 20 years) | 27 |
Descriptor
Introductory Courses | 35 |
Models | 35 |
Computer Science Education | 33 |
Programming | 20 |
Foreign Countries | 12 |
College Students | 10 |
Instructional Design | 7 |
Programming Languages | 7 |
Teaching Methods | 7 |
Undergraduate Students | 7 |
Computer Science | 6 |
More ▼ |
Source
Author
Barnes, Tiffany | 2 |
Chi, Min | 2 |
Coldwell-Neilson, Jo | 2 |
Shi, Yang | 2 |
Ai, Wenguo | 1 |
Aleksic, Veljko | 1 |
Bacon, Liz | 1 |
Ballera, Melvin A. | 1 |
Bart Mesuere | 1 |
Beard, Charles H. | 1 |
Bergin, Susan | 1 |
More ▼ |
Publication Type
Education Level
Higher Education | 17 |
Postsecondary Education | 14 |
Elementary Secondary Education | 1 |
High Schools | 1 |
Secondary Education | 1 |
Audience
Researchers | 1 |
Location
Philippines | 3 |
Greece | 2 |
Ireland | 2 |
Asia | 1 |
Australia | 1 |
Brazil | 1 |
China | 1 |
Connecticut | 1 |
Denmark | 1 |
Egypt | 1 |
Estonia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Computer Anxiety Scale | 1 |
What Works Clearinghouse Rating
Manuel B. Garcia – Education and Information Technologies, 2025
The global shortage of skilled programmers remains a persistent challenge. High dropout rates in introductory programming courses pose a significant obstacle to graduation. Previous studies highlighted learning difficulties in programming students, but their specific weaknesses remained unclear. This gap exists due to the predominant focus on the…
Descriptors: Programming, Introductory Courses, Computer Science Education, Mastery Learning
Priti Oli – ProQuest LLC, 2024
This dissertation focuses on strategies and techniques to enhance code comprehension skills among students enrolled in introductory computer science courses (CS1 and CS2). We propose a novel tutoring system, "DeepCodeTutor," designed to improve the code comprehension abilities of novices. DeepCodeTutor employs scaffolded self-explanation…
Descriptors: Reading Comprehension, Tutoring, Scaffolding (Teaching Technique), Automation
Rong, Wenge; Xu, Tianfan; Sun, Zhiwei; Sun, Zian; Ouyang, Yuanxin; Xiong, Zhang – IEEE Transactions on Education, 2023
Contribution: In this study, an object tuple model has been proposed, and a quasi-experimental study on its usage in an introductory programming language course has been reported. This work can be adopted by all C language teachers and students in learning pointer and array-related concepts. Background: C language has been extensively employed in…
Descriptors: Models, Introductory Courses, Programming, Computer Science Education
Zhang, Yingbin; Pinto, Juan D.; Fan, Aysa Xuemo; Paquette, Luc – Journal of Educational Data Mining, 2023
The second CSEDM data challenge aimed at finding innovative methods to use students' programming traces to model their learning. The main challenge of this task is how to decide which past problems are relevant for predicting performance on a future problem. This paper proposes a set of weighting schemes to address this challenge. Specifically,…
Descriptors: Problem Solving, Introductory Courses, Computer Science Education, Programming
Duran, Rodrigo; Sorva, Juha; Seppälä, Otto – ACM Transactions on Computing Education, 2021
We propose a framework for identifying, organizing, and communicating learning objectives that involve program semantics. In this framework, detailed learning objectives are written down as rules of program behavior (RPBs). RPBs are teacher-facing statements that describe what needs to be learned about the behavior of a specific sort of programs.…
Descriptors: Behavioral Objectives, Computer Science Education, Programming, Evaluation Criteria
Divasón, Jose; Martinez-de-Pison, Francisco Javier; Romero, Ana; Saenz-de-Cabezon, Eduardo – IEEE Transactions on Learning Technologies, 2023
The evaluation of student projects is a difficult task, especially when they involve both a technical and a creative component. We propose an artificial intelligence (AI)-based methodology to help in the evaluation of complex projects in engineering and computer science courses. This methodology is intended to evaluate the assessment process…
Descriptors: Student Projects, Student Evaluation, Artificial Intelligence, Models
Chung, Cheng-Yu; Hsiao, I-Han; Lin, Yi-Ling – Journal of Research on Technology in Education, 2023
Creating practice questions for programming learning is not an easy job. It requires the instructor to diligently organize heterogeneous learning resources. Although educational technologies have been adopted across levels of programming learning, programming question generation (PQG) is still predominantly performed by instructors without…
Descriptors: Artificial Intelligence, Programming, Questioning Techniques, Heterogeneous Grouping
Denis Zhidkikh; Ville Heilala; Charlotte Van Petegem; Peter Dawyndt; Miitta Jarvinen; Sami Viitanen; Bram De Wever; Bart Mesuere; Vesa Lappalainen; Lauri Kettunen; Raija Hämäläinen – Journal of Learning Analytics, 2024
Predictive learning analytics has been widely explored in educational research to improve student retention and academic success in an introductory programming course in computer science (CS1). General-purpose and interpretable dropout predictions still pose a challenge. Our study aims to reproduce and extend the data analysis of a privacy-first…
Descriptors: Learning Analytics, Prediction, School Holding Power, Academic Achievement
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Shi, Yang; Schmucker, Robin; Chi, Min; Barnes, Tiffany; Price, Thomas – International Educational Data Mining Society, 2023
Knowledge components (KCs) have many applications. In computing education, knowing the demonstration of specific KCs has been challenging. This paper introduces an entirely data-driven approach for: (1) discovering KCs; and (2) demonstrating KCs, using students' actual code submissions. Our system is based on two expected properties of KCs: (1)…
Descriptors: Computer Science Education, Data Analysis, Programming, Coding
Mahzoon, Mohammad Javad; Maher, Mary Lou; Eltayeby, Omar; Dou, Wenwen; Grace, Kazjon – Journal of Learning Analytics, 2018
Data models built for analyzing student data often obfuscate temporal relationships for reasons of simplicity, or to aid in generalization. We present a model based on temporal relationships of heterogeneous data as the basis for building predictive models. We show how within- and between-semester temporal patterns can provide insight into the…
Descriptors: Data Analysis, Learning, Models, Time
Quille, Keith; Bergin, Susan – Computer Science Education, 2019
Background and Context: Computer Science attrition rates (in the western world) are very concerning, with a large number of students failing to progress each year. It is well acknowledged that a significant factor of this attrition, is the students' difficulty to master the introductory programming module, often referred to as CS1. Objective: The…
Descriptors: Computer Science Education, Introductory Courses, Programming, Student Attrition
Flores, Rejeenald M.; Rodrigo, Ma. Mercedes T. – Journal of Educational Computing Research, 2020
Wheel-spinning refers to the failure to master a skill in a timely manner or after a considerable number of practice opportunities. Several past studies have developed wheel-spinning models in the areas of Mathematics and Physics. However, no models have been made for the context of novice programming. The purpose of this study was to develop…
Descriptors: Mastery Learning, Novices, Programming, Computer Science Education
Malik, Sohail Iqbal; Coldwell-Neilson, Jo – Education and Information Technologies, 2017
High failure and drop-out rates from introductory programming courses continue to be of significant concern to computer science disciplines despite extensive research attempting to address the issue. In this study, we include the three entities of the didactic triangle, instructors, students and curriculum, to explore the learning difficulties…
Descriptors: Programming, Barriers, Introductory Courses, Student Attitudes
Bey, Anis; Jermann, Patrick; Dillenbourg, Pierre – Educational Technology & Society, 2018
Computer-graders have been in regular use in the context of MOOCs (Massive Open Online Courses). The automatic grading of programs presents an opportunity to assess and provide tailored feedback to large classes, while featuring at the same time a number of benefits like: immediate feedback, unlimited submissions, as well as low cost of feedback.…
Descriptors: Comparative Analysis, Online Courses, Feedback (Response), Foreign Countries