NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 490 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Rong, Wenge; Xu, Tianfan; Sun, Zhiwei; Sun, Zian; Ouyang, Yuanxin; Xiong, Zhang – IEEE Transactions on Education, 2023
Contribution: In this study, an object tuple model has been proposed, and a quasi-experimental study on its usage in an introductory programming language course has been reported. This work can be adopted by all C language teachers and students in learning pointer and array-related concepts. Background: C language has been extensively employed in…
Descriptors: Models, Introductory Courses, Programming, Computer Science Education
Peer reviewed Peer reviewed
Direct linkDirect link
Michael E. Ellis; K. Mike Casey; Geoffrey Hill – Decision Sciences Journal of Innovative Education, 2024
Large Language Model (LLM) artificial intelligence tools present a unique challenge for educators who teach programming languages. While LLMs like ChatGPT have been well documented for their ability to complete exams and create prose, there is a noticeable lack of research into their ability to solve problems using high-level programming…
Descriptors: Artificial Intelligence, Programming Languages, Programming, Homework
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ibrahim Cetin; Tarik Otu – International Journal of Computer Science Education in Schools, 2023
The purpose of the current study was to explore the effect of modality (constructionist mBlock, Scratch, and Python interventions) on six-grade students' computational thinking, programming attitude, and achievement. The pre-test and post-test quasi-experimental design was used to explore the research questions. The study group consisted of 105…
Descriptors: Computation, Thinking Skills, Student Attitudes, Programming
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Boxuan Ma; Li Chen; Shin’ichi Konomi – International Association for Development of the Information Society, 2024
Generative artificial intelligence (AI) tools like ChatGPT are becoming increasingly common in educational settings, especially in programming education. However, the impact of these tools on the learning process, student performance, and best practices for their integration remains underexplored. This study examines student experiences and…
Descriptors: Artificial Intelligence, Computer Science Education, Programming, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Leao, Aline A. S.; Oliveira Filho, Adaiton M.; Toledo, Franklina M. B. – International Journal of Mathematical Education in Science and Technology, 2023
The purpose of this note is to describe a classroom activity that can be used in introductory Operations Research courses. It consists of modelling a one-dimensional puzzle using mathematical programming to produce glider models. The exercise is designed to motivate the students in solving a problem with the opportunity of producing by themselves…
Descriptors: Puzzles, Programming, Class Activities, Introductory Courses
Peer reviewed Peer reviewed
Direct linkDirect link
Tessa Charles; Carl Gwilliam – Journal for STEM Education Research, 2023
STEM fields, such as physics, increasingly rely on complex programs to analyse large datasets, thus teaching students the required programming skills is an important component of all STEM curricula. Since undergraduate students often have no prior coding experience, they are reliant on error messages as the primary diagnostic tool to identify and…
Descriptors: Automation, Feedback (Response), Error Correction, Physics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Daniele Traversaro; Giorgio Delzanno; Giovanna Guerrini – Informatics in Education, 2024
Concurrency is a complex to learn topic that is becoming more and more relevant, such that many undergraduate Computer Science curricula are introducing it in introductory programming courses. This paper investigates the combined use of Sonic Pi and Team-Based Learning to mitigate the difficulties in early exposure to concurrency. Sonic Pi, a…
Descriptors: Misconceptions, Programming Languages, Computer Science Education, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Qian, Yizhou; Lehman, James – Journal of Research on Technology in Education, 2022
This study investigated common student errors and underlying difficulties of two groups of Chinese middle school students in an introductory Python programming course using data in the automated assessment tool (AAT) Mulberry. One group of students was from a typical middle school while the other group was from a high-ability middle school. By…
Descriptors: Middle School Students, Programming, Computer Science Education, Error Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Heidi Taveter; Marina Lepp – Informatics in Education, 2025
Learning programming has become increasingly popular, with learners from diverse backgrounds and experiences requiring different support. Programming-process analysis helps to identify solver types and needs for assistance. The study examined students' behavior patterns in programming among beginners and non-beginners to identify solver types,…
Descriptors: Behavior Patterns, Novices, Expertise, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Yun Huang; Christian Dieter Schunn; Julio Guerra; Peter L. Brusilovsky – ACM Transactions on Computing Education, 2024
Programming skills are increasingly important to the current digital economy, yet these skills have long been regarded as challenging to acquire. A central challenge in learning programming skills involves the simultaneous use of multiple component skills. This article investigates why students struggle with integrating component skills--a…
Descriptors: Programming, Computer Science Education, Error Patterns, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
Dawar, Deepak – Journal of Information Systems Education, 2023
For most beginners, learning computer programming is a complex undertaking. Demotivation and learned helplessness have been widely reported. In addition to the subject's complexity, low in-class involvement has been linked to poor student performance. This work introduces a novel instructional technique called Student-Driven Probe Instruction…
Descriptors: Computer Science Education, Programming, Introductory Courses, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Bettin, Briana; Jarvie-Eggart, Michelle; Steelman, Kelly S.; Wallace, Charles – IEEE Transactions on Education, 2022
In the wake of the so-called fourth industrial revolution, computer programming has become a foundational competency across engineering disciplines. Yet engineering students often resist the notion that computer programming is a skill relevant to their future profession. Here are presented two activities aimed at supporting the early development…
Descriptors: College Freshmen, Engineering Education, Programming, Coding
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Phung, Tung; Cambronero, José; Gulwani, Sumit; Kohn, Tobias; Majumdarm, Rupak; Singla, Adish; Soares, Gustavo – International Educational Data Mining Society, 2023
Large language models (LLMs), such as Codex, hold great promise in enhancing programming education by automatically generating feedback for students. We investigate using LLMs to generate feedback for fixing syntax errors in Python programs, a key scenario in introductory programming. More concretely, given a student's buggy program, our goal is…
Descriptors: Computational Linguistics, Feedback (Response), Programming, Computer Science Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lokkila, Erno; Christopoulos, Athanasios; Laakso, Mikko-Jussi – Informatics in Education, 2023
Prior programming knowledge of students has a major impact on introductory programming courses. Those with prior experience often seem to breeze through the course. Those without prior experience see others breeze through the course and disengage from the material or drop out. The purpose of this study is to demonstrate that novice student…
Descriptors: Prior Learning, Programming, Computer Science Education, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Margulieux, Lauren; Parker, Miranda C.; Cetin Uzun, Gozde; Cohen, Jonathan D. – Journal of Technology and Teacher Education, 2023
Educators across disciplines are implementing lessons and activities that integrate computing concepts into their curriculum to broaden participation in computing. Out of myriad important introductory computing skills, it is unknown which--and to what extent--these concepts are included in these integrated experiences, especially when compared to…
Descriptors: Programming, Programming Languages, Computer Science Education, Age Differences
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  33