NotesFAQContact Us
Collection
Advanced
Search Tips
What Works Clearinghouse Rating
Showing 1 to 15 of 519 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Miguel A. García-Pérez – Educational and Psychological Measurement, 2024
A recurring question regarding Likert items is whether the discrete steps that this response format allows represent constant increments along the underlying continuum. This question appears unsolvable because Likert responses carry no direct information to this effect. Yet, any item administered in Likert format can identically be administered…
Descriptors: Likert Scales, Test Construction, Test Items, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Sohee Kim; Ki Lynn Cole – International Journal of Testing, 2025
This study conducted a comprehensive comparison of Item Response Theory (IRT) linking methods applied to a bifactor model, examining their performance on both multiple choice (MC) and mixed format tests within the common item nonequivalent group design framework. Four distinct multidimensional IRT linking approaches were explored, consisting of…
Descriptors: Item Response Theory, Comparative Analysis, Models, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Chan Zhang; Shuaiying Cao; Minglei Wang; Jiangyan Wang; Lirui He – Field Methods, 2025
Previous research on grid questions has mostly focused on their comparability with the item-by-item method and the use of shading to help respondents navigate through a grid. This study extends prior work by examining whether lexical similarity among grid items affects how respondents answer the questions in an experiment where we manipulated…
Descriptors: Foreign Countries, Surveys, Test Construction, Design
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaowen Liu – International Journal of Testing, 2024
Differential item functioning (DIF) often arises from multiple sources. Within the context of multidimensional item response theory, this study examined DIF items with varying secondary dimensions using the three DIF methods: SIBTEST, Mantel-Haenszel, and logistic regression. The effect of the number of secondary dimensions on DIF detection rates…
Descriptors: Item Analysis, Test Items, Item Response Theory, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Jiaying Xiao; Chun Wang; Gongjun Xu – Grantee Submission, 2024
Accurate item parameters and standard errors (SEs) are crucial for many multidimensional item response theory (MIRT) applications. A recent study proposed the Gaussian Variational Expectation Maximization (GVEM) algorithm to improve computational efficiency and estimation accuracy (Cho et al., 2021). However, the SE estimation procedure has yet to…
Descriptors: Error of Measurement, Models, Evaluation Methods, Item Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Martijn Schoenmakers; Jesper Tijmstra; Jeroen Vermunt; Maria Bolsinova – Educational and Psychological Measurement, 2024
Extreme response style (ERS), the tendency of participants to select extreme item categories regardless of the item content, has frequently been found to decrease the validity of Likert-type questionnaire results. For this reason, various item response theory (IRT) models have been proposed to model ERS and correct for it. Comparisons of these…
Descriptors: Item Response Theory, Response Style (Tests), Models, Likert Scales
Peer reviewed Peer reviewed
Direct linkDirect link
Sijia Huang; Dubravka Svetina Valdivia – Educational and Psychological Measurement, 2024
Identifying items with differential item functioning (DIF) in an assessment is a crucial step for achieving equitable measurement. One critical issue that has not been fully addressed with existing studies is how DIF items can be detected when data are multilevel. In the present study, we introduced a Lord's Wald X[superscript 2] test-based…
Descriptors: Item Analysis, Item Response Theory, Algorithms, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Zsuzsa Bakk – Structural Equation Modeling: A Multidisciplinary Journal, 2024
A standard assumption of latent class (LC) analysis is conditional independence, that is the items of the LC are independent of the covariates given the LCs. Several approaches have been proposed for identifying violations of this assumption. The recently proposed likelihood ratio approach is compared to residual statistics (bivariate residuals…
Descriptors: Goodness of Fit, Error of Measurement, Comparative Analysis, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hongwen Guo; Matthew S. Johnson; Daniel F. McCaffrey; Lixong Gu – ETS Research Report Series, 2024
The multistage testing (MST) design has been gaining attention and popularity in educational assessments. For testing programs that have small test-taker samples, it is challenging to calibrate new items to replenish the item pool. In the current research, we used the item pools from an operational MST program to illustrate how research studies…
Descriptors: Test Items, Test Construction, Sample Size, Scaling
Peer reviewed Peer reviewed
Direct linkDirect link
Gyamfi, Abraham; Acquaye, Rosemary – Acta Educationis Generalis, 2023
Introduction: Item response theory (IRT) has received much attention in validation of assessment instrument because it allows the estimation of students' ability from any set of the items. Item response theory allows the difficulty and discrimination levels of each item on the test to be estimated. In the framework of IRT, item characteristics are…
Descriptors: Item Response Theory, Models, Test Items, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
Sweeney, Sandra M.; Sinharay, Sandip; Johnson, Matthew S.; Steinhauer, Eric W. – Educational Measurement: Issues and Practice, 2022
The focus of this paper is on the empirical relationship between item difficulty and item discrimination. Two studies--an empirical investigation and a simulation study--were conducted to examine the association between item difficulty and item discrimination under classical test theory and item response theory (IRT), and the effects of the…
Descriptors: Correlation, Item Response Theory, Item Analysis, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
Hoang V. Nguyen; Niels G. Waller – Educational and Psychological Measurement, 2024
We conducted an extensive Monte Carlo study of factor-rotation local solutions (LS) in multidimensional, two-parameter logistic (M2PL) item response models. In this study, we simulated more than 19,200 data sets that were drawn from 96 model conditions and performed more than 7.6 million rotations to examine the influence of (a) slope parameter…
Descriptors: Monte Carlo Methods, Item Response Theory, Correlation, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Justin L. Kern – Journal of Educational and Behavioral Statistics, 2024
Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Generalization
Peer reviewed Peer reviewed
Direct linkDirect link
van der Linden, Wim J.; Belov, Dmitry I. – Journal of Educational Measurement, 2023
A test of item compromise is presented which combines the test takers' responses and response times (RTs) into a statistic defined as the number of correct responses on the item for test takers with RTs flagged as suspicious. The test has null and alternative distributions belonging to the well-known family of compound binomial distributions, is…
Descriptors: Item Response Theory, Reaction Time, Test Items, Item Analysis
Klauth, Bo – ProQuest LLC, 2023
In conducting confirmatory factor analysis with ordered response items, the literature suggests that when the number of responses is five and item skewness (IS) is approximately normal, researchers can employ maximum likelihood with robust standard errors (MLR). However, MLR can yield biased factor loadings (FL) and FL standard errors (FLSE) when…
Descriptors: Item Response Theory, Evaluation Methods, Factor Analysis, Error of Measurement
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11  |  ...  |  35