NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Type
Reports - Descriptive26
Journal Articles22
Guides - Non-Classroom1
Location
Netherlands1
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 26 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Jean-Paul Fox – Journal of Educational and Behavioral Statistics, 2025
Popular item response theory (IRT) models are considered complex, mainly due to the inclusion of a random factor variable (latent variable). The random factor variable represents the incidental parameter problem since the number of parameters increases when including data of new persons. Therefore, IRT models require a specific estimation method…
Descriptors: Sample Size, Item Response Theory, Accuracy, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Chen, Yunxiao; Lee, Yi-Hsuan; Li, Xiaoou – Journal of Educational and Behavioral Statistics, 2022
In standardized educational testing, test items are reused in multiple test administrations. To ensure the validity of test scores, the psychometric properties of items should remain unchanged over time. In this article, we consider the sequential monitoring of test items, in particular, the detection of abrupt changes to their psychometric…
Descriptors: Standardized Tests, Test Items, Test Validity, Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Roy – Educational Measurement: Issues and Practice, 2020
In this digital ITEMS module, Dr. Roy Levy describes Bayesian approaches to psychometric modeling. He discusses how Bayesian inference is a mechanism for reasoning in a probability-modeling framework and is well-suited to core problems in educational measurement: reasoning from student performances on an assessment to make inferences about their…
Descriptors: Bayesian Statistics, Psychometrics, Item Response Theory, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Fujimoto, Ken A. – Journal of Educational Measurement, 2020
Multilevel bifactor item response theory (IRT) models are commonly used to account for features of the data that are related to the sampling and measurement processes used to gather those data. These models conventionally make assumptions about the portions of the data structure that represent these features. Unfortunately, when data violate these…
Descriptors: Bayesian Statistics, Item Response Theory, Achievement Tests, Secondary School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison; Myers, Aaron – Educational Measurement: Issues and Practice, 2019
Drawing valid inferences from modern measurement models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. As Bayesian estimation is becoming more common, understanding the Bayesian approaches for evaluating model-data fit models…
Descriptors: Bayesian Statistics, Psychometrics, Models, Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J.; Samonte, Kelli – Educational and Psychological Measurement, 2015
Interest in using Bayesian methods for estimating item response theory models has grown at a remarkable rate in recent years. This attentiveness to Bayesian estimation has also inspired a growth in available software such as WinBUGS, R packages, BMIRT, MPLUS, and SAS PROC MCMC. This article intends to provide an accessible overview of Bayesian…
Descriptors: Item Response Theory, Bayesian Statistics, Computation, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison J.; Penfield, Randall D. – Educational Measurement: Issues and Practice, 2015
Drawing valid inferences from item response theory (IRT) models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. This instructional module provides an overview of methods used for evaluating the fit of IRT models. Upon completing…
Descriptors: Item Response Theory, Goodness of Fit, Models, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Chiu, Chia-Yi; Köhn, Hans-Friedrich; Wu, Huey-Min – International Journal of Testing, 2016
The Reduced Reparameterized Unified Model (Reduced RUM) is a diagnostic classification model for educational assessment that has received considerable attention among psychometricians. However, the computational options for researchers and practitioners who wish to use the Reduced RUM in their work, but do not feel comfortable writing their own…
Descriptors: Educational Diagnosis, Classification, Models, Educational Assessment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Arenson, Ethan A.; Karabatsos, George – Grantee Submission, 2017
Item response models typically assume that the item characteristic (step) curves follow a logistic or normal cumulative distribution function, which are strictly monotone functions of person test ability. Such assumptions can be overly-restrictive for real item response data. We propose a simple and more flexible Bayesian nonparametric IRT model…
Descriptors: Bayesian Statistics, Item Response Theory, Nonparametric Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Uto, Masaki; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2016
As an assessment method based on a constructivist approach, peer assessment has become popular in recent years. However, in peer assessment, a problem remains that reliability depends on the rater characteristics. For this reason, some item response models that incorporate rater parameters have been proposed. Those models are expected to improve…
Descriptors: Item Response Theory, Peer Evaluation, Bayesian Statistics, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Magis, David; Raiche, Gilles – Psychometrika, 2012
This paper focuses on two estimators of ability with logistic item response theory models: the Bayesian modal (BM) estimator and the weighted likelihood (WL) estimator. For the BM estimator, Jeffreys' prior distribution is considered, and the corresponding estimator is referred to as the Jeffreys modal (JM) estimator. It is established that under…
Descriptors: Item Response Theory, Computation, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Baldwin, Peter – Journal of Educational Measurement, 2011
Growing interest in fully Bayesian item response models begs the question: To what extent can model parameter posterior draws enhance existing practices? One practice that has traditionally relied on model parameter point estimates but may be improved by using posterior draws is the development of a common metric for two independently calibrated…
Descriptors: Item Response Theory, Bayesian Statistics, Computation, Sampling
Peer reviewed Peer reviewed
Direct linkDirect link
Rudner, Lawrence M. – Practical Assessment, Research & Evaluation, 2009
This paper describes and evaluates the use of measurement decision theory (MDT) to classify examinees based on their item response patterns. The model has a simple framework that starts with the conditional probabilities of examinees in each category or mastery state responding correctly to each item. The presented evaluation investigates: (1) the…
Descriptors: Classification, Scoring, Item Response Theory, Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Wainer, Howard – Journal of Educational and Behavioral Statistics, 2010
In this essay, the author tries to look forward into the 21st century to divine three things: (i) What skills will researchers in the future need to solve the most pressing problems? (ii) What are some of the most likely candidates to be those problems? and (iii) What are some current areas of research that seem mined out and should not distract…
Descriptors: Research Skills, Researchers, Internet, Access to Information
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Maris, Gunter; Bechger, Timo M. – Psicologica: International Journal of Methodology and Experimental Psychology, 2005
The DA-T Gibbs sampler is proposed by Maris and Maris (2002) as a Bayesian estimation method for a wide variety of "Item Response Theory (IRT) models". The present paper provides an expository account of the DA-T Gibbs sampler for the 2PL model. However, the scope is not limited to the 2PL model. It is demonstrated how the DA-T Gibbs…
Descriptors: Bayesian Statistics, Computation, Item Response Theory, Models
Previous Page | Next Page »
Pages: 1  |  2