Publication Date
In 2025 | 4 |
Since 2024 | 12 |
Since 2021 (last 5 years) | 42 |
Since 2016 (last 10 years) | 93 |
Since 2006 (last 20 years) | 203 |
Descriptor
Comparative Analysis | 264 |
Item Response Theory | 264 |
Test Items | 264 |
Difficulty Level | 72 |
Simulation | 66 |
Foreign Countries | 57 |
Item Analysis | 53 |
Models | 53 |
Scores | 48 |
Statistical Analysis | 41 |
Test Bias | 38 |
More ▼ |
Source
Author
Cohen, Allan S. | 6 |
Kim, Seock-Ho | 5 |
von Davier, Matthias | 5 |
Finch, Holmes | 4 |
Lee, Won-Chan | 4 |
Zhang, Jinming | 4 |
Chang, Hua-Hua | 3 |
DeBoer, George E. | 3 |
DeMars, Christine E. | 3 |
Hambleton, Ronald K. | 3 |
Herrmann-Abell, Cari F. | 3 |
More ▼ |
Publication Type
Education Level
Audience
Researchers | 2 |
Practitioners | 1 |
Students | 1 |
Location
Turkey | 8 |
United States | 6 |
Germany | 4 |
Japan | 4 |
South Korea | 4 |
Taiwan | 4 |
Australia | 3 |
Botswana | 3 |
Canada | 3 |
Indonesia | 3 |
Netherlands | 3 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Sohee Kim; Ki Lynn Cole – International Journal of Testing, 2025
This study conducted a comprehensive comparison of Item Response Theory (IRT) linking methods applied to a bifactor model, examining their performance on both multiple choice (MC) and mixed format tests within the common item nonequivalent group design framework. Four distinct multidimensional IRT linking approaches were explored, consisting of…
Descriptors: Item Response Theory, Comparative Analysis, Models, Item Analysis
Xiaowen Liu – International Journal of Testing, 2024
Differential item functioning (DIF) often arises from multiple sources. Within the context of multidimensional item response theory, this study examined DIF items with varying secondary dimensions using the three DIF methods: SIBTEST, Mantel-Haenszel, and logistic regression. The effect of the number of secondary dimensions on DIF detection rates…
Descriptors: Item Analysis, Test Items, Item Response Theory, Correlation
Mingfeng Xue; Ping Chen – Journal of Educational Measurement, 2025
Response styles pose great threats to psychological measurements. This research compares IRTree models and anchoring vignettes in addressing response styles and estimating the target traits. It also explores the potential of combining them at the item level and total-score level (ratios of extreme and middle responses to vignettes). Four models…
Descriptors: Item Response Theory, Models, Comparative Analysis, Vignettes
Gyamfi, Abraham; Acquaye, Rosemary – Acta Educationis Generalis, 2023
Introduction: Item response theory (IRT) has received much attention in validation of assessment instrument because it allows the estimation of students' ability from any set of the items. Item response theory allows the difficulty and discrimination levels of each item on the test to be estimated. In the framework of IRT, item characteristics are…
Descriptors: Item Response Theory, Models, Test Items, Difficulty Level
Joakim Wallmark; James O. Ramsay; Juan Li; Marie Wiberg – Journal of Educational and Behavioral Statistics, 2024
Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker's attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of…
Descriptors: Item Response Theory, Test Items, Models, Scoring
Eray Selçuk; Ergül Demir – International Journal of Assessment Tools in Education, 2024
This research aims to compare the ability and item parameter estimations of Item Response Theory according to Maximum likelihood and Bayesian approaches in different Monte Carlo simulation conditions. For this purpose, depending on the changes in the priori distribution type, sample size, test length, and logistics model, the ability and item…
Descriptors: Item Response Theory, Item Analysis, Test Items, Simulation
Raykov, Tenko – Measurement: Interdisciplinary Research and Perspectives, 2023
This software review discusses the capabilities of Stata to conduct item response theory modeling. The commands needed for fitting the popular one-, two-, and three-parameter logistic models are initially discussed. The procedure for testing the discrimination parameter equality in the one-parameter model is then outlined. The commands for fitting…
Descriptors: Item Response Theory, Models, Comparative Analysis, Item Analysis
Shaojie Wang; Won-Chan Lee; Minqiang Zhang; Lixin Yuan – Applied Measurement in Education, 2024
To reduce the impact of parameter estimation errors on IRT linking results, recent work introduced two information-weighted characteristic curve methods for dichotomous items. These two methods showed outstanding performance in both simulation and pseudo-form pseudo-group analysis. The current study expands upon the concept of information…
Descriptors: Item Response Theory, Test Format, Test Length, Error of Measurement
Kim, Stella Yun; Lee, Won-Chan – Applied Measurement in Education, 2023
This study evaluates various scoring methods including number-correct scoring, IRT theta scoring, and hybrid scoring in terms of scale-score stability over time. A simulation study was conducted to examine the relative performance of five scoring methods in terms of preserving the first two moments of scale scores for a population in a chain of…
Descriptors: Scoring, Comparative Analysis, Item Response Theory, Simulation
Liu, Jinghua; Becker, Kirk – Journal of Educational Measurement, 2022
For any testing programs that administer multiple forms across multiple years, maintaining score comparability via equating is essential. With continuous testing and high-stakes results, especially with less secure online administrations, testing programs must consider the potential for cheating on their exams. This study used empirical and…
Descriptors: Cheating, Item Response Theory, Scores, High Stakes Tests
Kyung-Mi O. – Language Testing in Asia, 2024
This study examines the efficacy of artificial intelligence (AI) in creating parallel test items compared to human-made ones. Two test forms were developed: one consisting of 20 existing human-made items and another with 20 new items generated with ChatGPT assistance. Expert reviews confirmed the content parallelism of the two test forms.…
Descriptors: Comparative Analysis, Artificial Intelligence, Computer Software, Test Items
Fuchimoto, Kazuma; Ishii, Takatoshi; Ueno, Maomi – IEEE Transactions on Learning Technologies, 2022
Educational assessments often require uniform test forms, for which each test form has equivalent measurement accuracy but with a different set of items. For uniform test assembly, an important issue is the increase of the number of assembled uniform tests. Although many automatic uniform test assembly methods exist, the maximum clique algorithm…
Descriptors: Simulation, Efficiency, Test Items, Educational Assessment
Roger Young; Emily Courtney; Alexander Kah; Mariah Wilkerson; Yi-Hsin Chen – Teaching of Psychology, 2025
Background: Multiple-choice item (MCI) assessments are burdensome for instructors to develop. Artificial intelligence (AI, e.g., ChatGPT) can streamline the process without sacrificing quality. The quality of AI-generated MCIs and human experts is comparable. However, whether the quality of AI-generated MCIs is equally good across various domain-…
Descriptors: Item Response Theory, Multiple Choice Tests, Psychology, Textbooks
Sedat Sen; Allan S. Cohen – Educational and Psychological Measurement, 2024
A Monte Carlo simulation study was conducted to compare fit indices used for detecting the correct latent class in three dichotomous mixture item response theory (IRT) models. Ten indices were considered: Akaike's information criterion (AIC), the corrected AIC (AICc), Bayesian information criterion (BIC), consistent AIC (CAIC), Draper's…
Descriptors: Goodness of Fit, Item Response Theory, Sample Size, Classification
Yixi Wang – ProQuest LLC, 2020
Binary item response theory (IRT) models are widely used in educational testing data. These models are not perfect because they simplify the individual item responding process, ignore the differences among different response patterns, cannot handle multidimensionality that lay behind options within a single item, and cannot manage missing response…
Descriptors: Item Response Theory, Educational Testing, Data, Models