NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 85 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jianbin Fu; TsungHan Ho; Xuan Tan – Practical Assessment, Research & Evaluation, 2025
Item parameter estimation using an item response theory (IRT) model with fixed ability estimates is useful in equating with small samples on anchor items. The current study explores the impact of three ability estimation methods (weighted likelihood estimation [WLE], maximum a posteriori [MAP], and posterior ability distribution estimation [PST])…
Descriptors: Item Response Theory, Test Items, Computation, Equated Scores
Peer reviewed Peer reviewed
Direct linkDirect link
Justin L. Kern – Journal of Educational and Behavioral Statistics, 2024
Given the frequent presence of slipping and guessing in item responses, models for the inclusion of their effects are highly important. Unfortunately, the most common model for their inclusion, the four-parameter item response theory model, potentially has severe deficiencies related to its possible unidentifiability. With this issue in mind, the…
Descriptors: Item Response Theory, Models, Bayesian Statistics, Generalization
Peer reviewed Peer reviewed
Direct linkDirect link
TsungHan Ho – Applied Measurement in Education, 2023
An operational multistage adaptive test (MST) requires the development of a large item bank and the effort to continuously replenish the item bank due to concerns about test security and validity over the long term. New items should be pretested and linked to the item bank before being used operationally. The linking item volume fluctuations in…
Descriptors: Bayesian Statistics, Regression (Statistics), Test Items, Pretesting
Yuqi Gu; Elena A. Erosheva; Gongjun Xu; David B. Dunson – Grantee Submission, 2023
Mixed Membership Models (MMMs) are a popular family of latent structure models for complex multivariate data. Instead of forcing each subject to belong to a single cluster, MMMs incorporate a vector of subject-specific weights characterizing partial membership across clusters. With this flexibility come challenges in uniquely identifying,…
Descriptors: Multivariate Analysis, Item Response Theory, Bayesian Statistics, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Muharrem; Karal, Hasan; Nabiyev, Vasif – Education and Information Technologies, 2023
This study aims to examine adaptability for educational games in terms of adaptation elements, components used in creating user profiles, and decision algorithms used for adaptation. For this purpose, articles and full-text papers in Web of Science, Google Scholar, and Eric databases between 2000-2021 were searched using the keywords…
Descriptors: Educational Games, Game Based Learning, Programming, Physics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karadavut, Tugba – International Journal of Assessment Tools in Education, 2019
Item Response Theory (IRT) models traditionally assume a normal distribution for ability. Although normality is often a reasonable assumption for ability, it is rarely met for observed scores in educational and psychological measurement. Assumptions regarding ability distribution were previously shown to have an effect on IRT parameter estimation.…
Descriptors: Item Response Theory, Computation, Bayesian Statistics, Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Lozano, José H.; Revuelta, Javier – Applied Measurement in Education, 2021
The present study proposes a Bayesian approach for estimating and testing the operation-specific learning model, a variant of the linear logistic test model that allows for the measurement of the learning that occurs during a test as a result of the repeated use of the operations involved in the items. The advantages of using a Bayesian framework…
Descriptors: Bayesian Statistics, Computation, Learning, Testing
Peer reviewed Peer reviewed
Direct linkDirect link
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
van der Linden, Wim J.; Ren, Hao – Journal of Educational and Behavioral Statistics, 2020
The Bayesian way of accounting for the effects of error in the ability and item parameters in adaptive testing is through the joint posterior distribution of all parameters. An optimized Markov chain Monte Carlo algorithm for adaptive testing is presented, which samples this distribution in real time to score the examinee's ability and optimally…
Descriptors: Bayesian Statistics, Adaptive Testing, Error of Measurement, Markov Processes
Peer reviewed Peer reviewed
Direct linkDirect link
da Silva, Marcelo A.; Liu, Ren; Huggins-Manley, Anne C.; Bazán, Jorge L. – Educational and Psychological Measurement, 2019
Multidimensional item response theory (MIRT) models use data from individual item responses to estimate multiple latent traits of interest, making them useful in educational and psychological measurement, among other areas. When MIRT models are applied in practice, it is not uncommon to see that some items are designed to measure all latent traits…
Descriptors: Item Response Theory, Matrices, Models, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Marcoulides, Katerina M. – Measurement: Interdisciplinary Research and Perspectives, 2018
This study examined the use of Bayesian analysis methods for the estimation of item parameters in a two-parameter logistic item response theory model. Using simulated data under various design conditions with both informative and non-informative priors, the parameter recovery of Bayesian analysis methods were examined. Overall results showed that…
Descriptors: Bayesian Statistics, Item Response Theory, Probability, Difficulty Level
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Jing; Wang, Chun – Journal of Educational Measurement, 2020
Item nonresponses are prevalent in standardized testing. They happen either when students fail to reach the end of a test due to a time limit or quitting, or when students choose to omit some items strategically. Oftentimes, item nonresponses are nonrandom, and hence, the missing data mechanism needs to be properly modeled. In this paper, we…
Descriptors: Item Response Theory, Test Items, Standardized Tests, Responses
Peer reviewed Peer reviewed
Direct linkDirect link
Man, Kaiwen; Harring, Jeffrey R. – Educational and Psychological Measurement, 2019
With the development of technology-enhanced learning platforms, eye-tracking biometric indicators can be recorded simultaneously with students item responses. In the current study, visual fixation, an essential eye-tracking indicator, is modeled to reflect the degree of test engagement when a test taker solves a set of test questions. Three…
Descriptors: Test Items, Eye Movements, Models, Regression (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Ames, Allison; Myers, Aaron – Educational Measurement: Issues and Practice, 2019
Drawing valid inferences from modern measurement models is contingent upon a good fit of the data to the model. Violations of model-data fit have numerous consequences, limiting the usefulness and applicability of the model. As Bayesian estimation is becoming more common, understanding the Bayesian approaches for evaluating model-data fit models…
Descriptors: Bayesian Statistics, Psychometrics, Models, Predictive Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Descriptors: Bayesian Statistics, Structural Equation Models, Computation, Social Science Research
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6