NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Tong Wu; Stella Y. Kim; Carl Westine; Michelle Boyer – Journal of Educational Measurement, 2025
While significant attention has been given to test equating to ensure score comparability, limited research has explored equating methods for rater-mediated assessments, where human raters inherently introduce error. If not properly addressed, these errors can undermine score interchangeability and test validity. This study proposes an equating…
Descriptors: Item Response Theory, Evaluators, Error of Measurement, Test Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Casabianca, Jodi M. – Educational Measurement: Issues and Practice, 2021
Module Overview: In this digital ITEMS module, Dr. Jodi M. Casabianca provides a primer on the "hierarchical rater model" (HRM) framework and the recent expansions to the model for analyzing raters and ratings of constructed responses. In the first part of the module, she establishes an understanding of the nature of constructed…
Descriptors: Hierarchical Linear Modeling, Rating Scales, Error of Measurement, Item Response Theory
Xue Zhang; Chun Wang – Grantee Submission, 2021
Among current state-of-art estimation methods for multilevel IRT models, the two-stage divide-and-conquer strategy has practical advantages, such as clearer definition of factors, convenience for secondary data analysis, convenience for model calibration and fit evaluation, and avoidance of improper solutions. However, various studies have shown…
Descriptors: Error of Measurement, Error Correction, Item Response Theory, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lee, Hyung Rock; Lee, Sunbok; Sung, Jaeyun – International Journal of Assessment Tools in Education, 2019
Applying single-level statistical models to multilevel data typically produces underestimated standard errors, which may result in misleading conclusions. This study examined the impact of ignoring multilevel data structure on the estimation of item parameters and their standard errors of the Rasch, two-, and three-parameter logistic models in…
Descriptors: Item Response Theory, Computation, Error of Measurement, Test Bias
Fan Pan – ProQuest LLC, 2021
This dissertation informed researchers about the performance of different level-specific and target-specific model fit indices in Multilevel Latent Growth Model (MLGM) using unbalanced design and different trajectories. As the use of MLGMs is a relatively new field, this study helped further the field by informing researchers interested in using…
Descriptors: Goodness of Fit, Item Response Theory, Growth Models, Monte Carlo Methods
Cho, Sun-Joo; Bottge, Brian A. – Grantee Submission, 2015
In a pretest-posttest cluster-randomized trial, one of the methods commonly used to detect an intervention effect involves controlling pre-test scores and other related covariates while estimating an intervention effect at post-test. In many applications in education, the total post-test and pre-test scores that ignores measurement error in the…
Descriptors: Item Response Theory, Hierarchical Linear Modeling, Pretests Posttests, Scores
Quesen, Sarah – ProQuest LLC, 2016
When studying differential item functioning (DIF) with students with disabilities (SWD) focal groups typically suffer from small sample size, whereas the reference group population is usually large. This makes it possible for a researcher to select a sample from the reference population to be similar to the focal group on the ability scale. Doing…
Descriptors: Test Items, Academic Accommodations (Disabilities), Testing Accommodations, Disabilities
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups