Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 0 |
Since 2016 (last 10 years) | 2 |
Since 2006 (last 20 years) | 10 |
Descriptor
Item Response Theory | 14 |
Probability | 14 |
Test Length | 14 |
Simulation | 7 |
Sample Size | 6 |
Goodness of Fit | 5 |
Adaptive Testing | 4 |
Bayesian Statistics | 4 |
Computer Assisted Testing | 4 |
Classification | 3 |
Computation | 3 |
More ▼ |
Source
Applied Psychological… | 3 |
Educational and Psychological… | 3 |
Applied Measurement in… | 1 |
Educational Research and… | 1 |
Journal of Educational… | 1 |
Journal of Educational and… | 1 |
Measurement:… | 1 |
Psychometrika | 1 |
Author
Glas, Cees A. W. | 2 |
Meijer, Rob R. | 2 |
Abad, Francisco J. | 1 |
Ames, Allison J. | 1 |
Andersson, Björn | 1 |
Bergstrom, Betty A. | 1 |
De Ayala, R. J. | 1 |
Doebler, Anna | 1 |
Doebler, Philipp | 1 |
Drasgow, Fritz | 1 |
Eggen, Theo J. H. M. | 1 |
More ▼ |
Publication Type
Journal Articles | 12 |
Reports - Research | 8 |
Reports - Evaluative | 5 |
Speeches/Meeting Papers | 3 |
Reports - Descriptive | 1 |
Education Level
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Germany | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Ames, Allison J.; Leventhal, Brian C.; Ezike, Nnamdi C. – Measurement: Interdisciplinary Research and Perspectives, 2020
Data simulation and Monte Carlo simulation studies are important skills for researchers and practitioners of educational and psychological measurement, but there are few resources on the topic specific to item response theory. Even fewer resources exist on the statistical software techniques to implement simulation studies. This article presents…
Descriptors: Monte Carlo Methods, Item Response Theory, Simulation, Computer Software
Andersson, Björn – Journal of Educational Measurement, 2016
In observed-score equipercentile equating, the goal is to make scores on two scales or tests measuring the same construct comparable by matching the percentiles of the respective score distributions. If the tests consist of different items with multiple categories for each item, a suitable model for the responses is a polytomous item response…
Descriptors: Equated Scores, Item Response Theory, Error of Measurement, Tests
Tendeiro, Jorge N.; Meijer, Rob R. – Applied Psychological Measurement, 2013
To classify an item score pattern as not fitting a nonparametric item response theory (NIRT) model, the probability of exceedance (PE) of an observed response vector x can be determined as the sum of the probabilities of all response vectors that are, at most, as likely as x, conditional on the test's total score. Vector x is to be considered…
Descriptors: Probability, Nonparametric Statistics, Goodness of Fit, Test Length
Doebler, Anna; Doebler, Philipp; Holling, Heinz – Psychometrika, 2013
The common way to calculate confidence intervals for item response theory models is to assume that the standardized maximum likelihood estimator for the person parameter [theta] is normally distributed. However, this approximation is often inadequate for short and medium test lengths. As a result, the coverage probabilities fall below the given…
Descriptors: Foreign Countries, Item Response Theory, Computation, Hypothesis Testing
Tay, Louis; Drasgow, Fritz – Educational and Psychological Measurement, 2012
Two Monte Carlo simulation studies investigated the effectiveness of the mean adjusted X[superscript 2]/df statistic proposed by Drasgow and colleagues and, because of problems with the method, a new approach for assessing the goodness of fit of an item response theory model was developed. It has been previously recommended that mean adjusted…
Descriptors: Test Length, Monte Carlo Methods, Goodness of Fit, Item Response Theory
Eggen, Theo J. H. M. – Educational Research and Evaluation, 2011
If classification in a limited number of categories is the purpose of testing, computerized adaptive tests (CATs) with algorithms based on sequential statistical testing perform better than estimation-based CATs (e.g., Eggen & Straetmans, 2000). In these computerized classification tests (CCTs), the Sequential Probability Ratio Test (SPRT) (Wald,…
Descriptors: Test Length, Adaptive Testing, Classification, Item Analysis
Sueiro, Manuel J.; Abad, Francisco J. – Educational and Psychological Measurement, 2011
The distance between nonparametric and parametric item characteristic curves has been proposed as an index of goodness of fit in item response theory in the form of a root integrated squared error index. This article proposes to use the posterior distribution of the latent trait as the nonparametric model and compares the performance of an index…
Descriptors: Goodness of Fit, Item Response Theory, Nonparametric Statistics, Probability
Finkelman, Matthew David – Applied Psychological Measurement, 2010
In sequential mastery testing (SMT), assessment via computer is used to classify examinees into one of two mutually exclusive categories. Unlike paper-and-pencil tests, SMT has the capability to use variable-length stopping rules. One approach to shortening variable-length tests is stochastic curtailment, which halts examination if the probability…
Descriptors: Mastery Tests, Computer Assisted Testing, Adaptive Testing, Test Length
Finkelman, Matthew – Journal of Educational and Behavioral Statistics, 2008
Sequential mastery testing (SMT) has been researched as an efficient alternative to paper-and-pencil testing for pass/fail examinations. One popular method for determining when to cease examination in SMT is the truncated sequential probability ratio test (TSPRT). This article introduces the application of stochastic curtailment in SMT to shorten…
Descriptors: Mastery Tests, Sequential Approach, Computer Assisted Testing, Adaptive Testing
Glas, Cees A. W.; Pimentel, Jonald L. – Educational and Psychological Measurement, 2008
In tests with time limits, items at the end are often not reached. Usually, the pattern of missing responses depends on the ability level of the respondents; therefore, missing data are not ignorable in statistical inference. This study models data using a combination of two item response theory (IRT) models: one for the observed response data and…
Descriptors: Intelligence Tests, Statistical Inference, Item Response Theory, Modeling (Psychology)
Hendrawan, Irene; Glas, Cees A. W.; Meijer, Rob R. – Applied Psychological Measurement, 2005
The effect of person misfit to an item response theory model on a mastery/nonmastery decision was investigated. Furthermore, it was investigated whether the classification precision can be improved by identifying misfitting respondents using person-fit statistics. A simulation study was conducted to investigate the probability of a correct…
Descriptors: Probability, Statistics, Test Length, Simulation
De Ayala, R. J. – 1993
Previous work on the effects of dimensionality on parameter estimation was extended from dichotomous models to the polytomous graded response (GR) model. A multidimensional GR model was developed to generate data in one-, two-, and three-dimensions, with two- and three-dimensional conditions varying in their interdimensional associations. Test…
Descriptors: Computer Simulation, Correlation, Difficulty Level, Estimation (Mathematics)
Kim, Seock-Ho; And Others – 1992
Hierarchical Bayes procedures were compared for estimating item and ability parameters in item response theory. Simulated data sets from the two-parameter logistic model were analyzed using three different hierarchical Bayes procedures: (1) the joint Bayesian with known hyperparameters (JB1); (2) the joint Bayesian with information hyperpriors…
Descriptors: Ability, Bayesian Statistics, Comparative Analysis, Equations (Mathematics)

Bergstrom, Betty A.; And Others – Applied Measurement in Education, 1992
Effects of altering test difficulty on examinee ability measures and test length in a computer adaptive test were studied for 225 medical technology students in 3 test difficulty conditions. Results suggest that, with an item pool of sufficient depth and breadth, acceptable targeting to test difficulty is possible. (SLD)
Descriptors: Ability, Adaptive Testing, Change, College Students