Publication Date
In 2025 | 1 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 5 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 13 |
Descriptor
Source
Chemical Engineering Education | 24 |
Author
Publication Type
Journal Articles | 22 |
Reports - Descriptive | 14 |
Reports - Research | 5 |
Guides - Classroom - Teacher | 2 |
Reports - Evaluative | 1 |
Tests/Questionnaires | 1 |
Education Level
Higher Education | 14 |
Postsecondary Education | 10 |
Adult Education | 1 |
Audience
Practitioners | 7 |
Teachers | 7 |
Administrators | 1 |
Researchers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Natacha Souto-Melgar – Chemical Engineering Education, 2025
This paper describes the combination of problem-based learning (PBL) and simulation tools in the chemical engineering unit operation laboratory course, focusing on heat transfer concepts using a shell-and-tube heat exchanger experiment. This approach has significantly enhanced student learning outcomes by bridging theory with practice, fostering a…
Descriptors: Chemical Engineering, Heat, Problem Based Learning, Critical Thinking
Christopher W. Norfolk; Timothy Ellis – Chemical Engineering Education, 2024
The effect of digital tools (pre-lab videos and 3D models of experimental equipment) on student's performance of a typical lab assignment was studied quantitatively; for some students, these digital tools replaced physical access to the equipment. These students also participated in focus groups and gave good suggestions to make the digital tools…
Descriptors: Educational Technology, Electronic Learning, COVID-19, Pandemics
Gao, Jie; Crossley, Steven P.; Nollert, Matthias U.; Lobban, Lance L.; Papavassiliou, Dimitrios V. – Chemical Engineering Education, 2021
This paper reports an innovative, hybrid teaching model for a junior level lab course. This model leverages in-person lab operation by adding a student-led online learning mode. Both course outcomes and student outcomes were evaluated. Student feedback was collected, and its analysis showed both positive and negative impacts in this hybrid model.…
Descriptors: Pandemics, COVID-19, School Closing, Online Courses
Chenette, Heather C. S.; Neumann, Gregory T.; Anastasio, Daniel D. – Chemical Engineering Education, 2021
Unit operations laboratory courses culminate many topics from the curriculum and are often the first time students apply their knowledge in hands-on settings. However, many instructors do not directly assess key learning objectives, creating a disparity between desired and actual learning. Using multiple assessment tools, we analyzed student…
Descriptors: Chemical Engineering, Student Experience, Student Attitudes, Laboratories
Hansen, Ryan R.; Anderson, Audrey C.; Barua, Niloy; McGinley, Logan M. – Chemical Engineering Education, 2021
This report evaluates the use of active, open-ended research problems taken from the instructor's laboratory and assigned as mid-semester projects in Transport Phenomena. Projects are structured in a POGIL [process oriented guided inquiry learning] format and designed to engage students by providing them the opportunity to impact real research…
Descriptors: Teaching Methods, Laboratories, Motion, Energy
Vernengo, Jennifer; Purdy, Caitlin; Farrell, Stephanie – Chemical Engineering Education, 2014
This paper describes a biomedical engineering experiment that introduces students to rheology. Healthy and sickle-cell blood analogs are prepared that are composed of chitosan particles suspended in aqueous glycerol solutions, which substitute for RBCs and plasma, respectively. Students study flow properties of the blood analogs with a viscometer…
Descriptors: Science Instruction, Chemical Engineering, Scientific Concepts, Concept Formation
Rende, Deniz; Rende, Sevinc; Baysal, Nihat – Chemical Engineering Education, 2012
We introduce the design of three consecutive unit operations laboratory (UOL) courses that retain the academic rigor of the course while incorporating skills essential for professional careers, such as ability to propose ideas, develop practical solutions, participate in teamwork, meet deadlines, establish communication between technical support…
Descriptors: Laboratories, Graduate Surveys, Job Skills, Science Careers
Aronson, Mark T.; Deitcher, Robert W.; Xi, Yuanzhou; Davis, Robert J. – Chemical Engineering Education, 2009
A new laboratory course has been developed at the University of Virginia for senior- level chemical engineering students. The new course is based on three 4-week long experiments in bioprocess engineering, energy conversion and catalysis, and polymer synthesis and characterization. The emphasis is on the integration of process steps and the…
Descriptors: Feedback (Response), Laboratories, Chemical Engineering, Laboratory Experiments
Carta, Jungbauer – Chemical Engineering Education, 2011
We describe an intensive course that integrates graduate and continuing education focused on the development and scale-up of chromatography processes used for the recovery and purification of proteins with special emphasis on biotherapeutics. The course includes lectures, laboratories, teamwork, and a design exercise and offers a complete view of…
Descriptors: Chemistry, Chemical Engineering, Engineering Education, Graduate Study
Heitsch, Andrew T.; Ekerdt, John G.; Korgel, Brian A. – Chemical Engineering Education, 2009
The University of Texas at Austin has developed an upper-division undergraduate laboratory called "NANOLAB" to introduce undergraduate science and engineering students to nanoscale science and engineering (NSE) concepts. The NANOLAB is not a stand-alone course offered by a specific department, but rather a laboratory station--or hub--that…
Descriptors: Undergraduate Students, Engineering Education, Laboratories, Natural Sciences
Ortiz-Rodriguez, Estanislao; Vazquez-Arenas, Jorge; Ricardez-Sandoval, Luis A. – Chemical Engineering Education, 2010
An overview of a course on modeling and simulation offered at the Nanotechnology Engineering undergraduate program at the University of Waterloo. The motivation for having this course in the undergraduate nanotechnology curriculum, the course structure, and its learning objectives are discussed. Further, one of the computational laboratories…
Descriptors: Course Content, Laboratories, Undergraduate Students, Universities
Vaidyanath, Sreeram; Williams, Jason; Hilliard, Marcus; Wiesner, Theodore – Chemical Engineering Education, 2007
Computer-simulated experiments offer many benefits to engineering curricula in the areas of safety, cost, and flexibility. We report our experience in developing and deploying a computer-simulated unit operations laboratory, driven by the guiding principle of maximum fidelity to the physical lab. We find that, while the up-front investment in…
Descriptors: Engineering Education, Laboratories, Computer Assisted Instruction, Simulation

Conner, Wm. Curtis, Jr. – Chemical Engineering Education, 1990
Describes the conversion of a laboratory and change in course content in a chemical engineering curriculum. Lists laboratory experiments and computer programs used in the course. Discusses difficulties during the laboratory conversion and future plans for the course. (YP)
Descriptors: Chemical Engineering, College Science, Computer Oriented Programs, Computer Software

Snyder, William J., Hanyak, Michael E. – Chemical Engineering Education, 1985
Describes the advantages and features of computer-assisted laboratory stations for use in a chemical engineering program. Also describes a typical experiment at such a station: determining the response times of a solid state humidity sensor at various humidity conditions and developing an empirical model for the sensor. (JN)
Descriptors: Chemical Engineering, Computer Oriented Programs, Engineering Education, Higher Education

Davies, W. A.; And Others – Chemical Engineering Education, 1991
Described is a laboratory in which students are confronted with rigs built from full-sized industrial machinery and equipment. Students must draw a flow sheet, dismantle and draw key components, reassemble the parts, operate the rig, and interpret the run data. The laboratory and the course built around it are discussed. (KR)
Descriptors: Chemical Engineering, Chemistry, College Science, Course Descriptions
Previous Page | Next Page ยป
Pages: 1 | 2