Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 5 |
Since 2006 (last 20 years) | 9 |
Descriptor
Laboratory Experiments | 11 |
Models | 11 |
Spectroscopy | 11 |
Science Instruction | 8 |
Chemistry | 7 |
Undergraduate Students | 7 |
Computation | 5 |
College Science | 4 |
Molecular Structure | 4 |
Science Experiments | 4 |
Computer Simulation | 3 |
More ▼ |
Author
Amanda Rae Buchberger | 1 |
Angie E. Xu | 1 |
Anslyn, Eric V. | 1 |
Beckham, Josh T. | 1 |
Brian J. Esselman | 1 |
Cara E. Schwarz | 1 |
Carla Morais | 1 |
DePue, Lauren | 1 |
Falconer, Renee | 1 |
Fedor, Anna M. | 1 |
Ghanem, Eman | 1 |
More ▼ |
Publication Type
Journal Articles | 10 |
Reports - Descriptive | 5 |
Reports - Research | 3 |
Reports - Evaluative | 2 |
Dissertations/Theses -… | 1 |
Guides - Classroom - Teacher | 1 |
Education Level
Higher Education | 8 |
Postsecondary Education | 6 |
Audience
Teachers | 2 |
Practitioners | 1 |
Location
Texas | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Philip P. Lampkin; Angie E. Xu; Brian J. Esselman; Cara E. Schwarz; Sebastian D. Thompson; Samuel H. Gellman; Nicholas J. Hill – Journal of Chemical Education, 2024
Synthesis of (Z)-alkenes is challenging because the (E) stereoisomers are usually more stable. Energy transfer photocatalysis has emerged as an efficient strategy for (E) [right arrow] (Z) alkene isomerization. We report the development of an advanced undergraduate laboratory experiment that introduces students to contemporary organic…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Synthesis
Sarah E. Shaner; Kari L. Stone – Journal of Chemical Education, 2023
A Fourier transform infrared (FTIR) experiment appropriate for an upper-level undergraduate laboratory such as chemical instrumentation is described. Students collect FTIR spectra of four protio-solvents and their deuterated analogues. In addition to qualitatively observing C-H and O-H peaks shift to lower energy upon deuteration, students apply a…
Descriptors: Undergraduate Students, Spectroscopy, Chemistry, Science Instruction
Natalia Spitha; Yujian Zhang; Samuel Pazicni; Sarah A. Fullington; Carla Morais; Amanda Rae Buchberger; Pamela S. Doolittle – Chemistry Education Research and Practice, 2024
The Beer-Lambert law is a fundamental relationship in chemistry that helps connect macroscopic experimental observations (i.e., the amount of light exiting a solution sample) to a symbolic model composed of system-level parameters (e.g., concentration values). Despite the wide use of the Beer-Lambert law in the undergraduate chemistry curriculum…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Scientific Principles
Malinak, Steven M.; Hertzog, Jerald E.; Pacilio, Julia E.; Polvani, Deborah A. – Journal of Chemical Education, 2019
Laboratory experiments that offer interdisciplinary experiences for students are appealing and are increasingly popular additions to undergraduate chemistry curricula. Students can capitalize on their knowledge of multiple areas of chemistry while working through an application, and this fosters the development of progressive problem-solving…
Descriptors: Laboratory Experiments, Models, Undergraduate Students, College Science
Ghanem, Eman; Long, S. Reid; Rodenbusch, Stacia E.; Shear, Ruth I.; Beckham, Josh T.; Procko, Kristen; DePue, Lauren; Stevenson, Keith J.; Robertus, Jon D.; Martin, Stephen; Holliday, Bradley; Jones, Richard A.; Anslyn, Eric V.; Simmons, Sarah L. – Journal of Chemical Education, 2018
Innovative models of teaching through research have broken the long-held paradigm that core chemistry competencies must be taught with predictable, scripted experiments. We describe here five fundamentally different, course-based undergraduate research experiences that integrate faculty research projects, accomplish ACS accreditation objectives,…
Descriptors: Chemistry, Science Instruction, College Science, Undergraduate Study
Hii, King Kuok; Rzepa, Henry S.; Smith, Edward H. – Journal of Chemical Education, 2015
The coupling of a student experiment involving the preparation and use of a catalyst for the asymmetric epoxidation of an alkene with computational simulations of various properties of the resulting epoxide is set out in the form of a software toolbox from which students select appropriate components. At the core of these are the computational…
Descriptors: Organic Chemistry, Laboratory Experiments, Science Experiments, College Science
Fedor, Anna M.; Toda, Megan J. – Journal of Chemical Education, 2014
The hydrogen bonding of phenol can be used as an introductory model for biological systems because of its structural similarities to tyrosine, a para-substituted phenol that is an amino acid essential to the synthesis of proteins. Phenol is able to form hydrogen bonds readily in solution, which makes it a suitable model for biological…
Descriptors: Spectroscopy, Chemistry, Science Education, Investigations
Yeates, Devin Rodney – ProQuest LLC, 2011
The goal of this dissertation is to enable better predictive models by engaging raw experimental data through the Instrumental Model. The Instrumental Model captures the protocols and procedures of experimental data analysis. The approach is formalized by encoding the Instrumental Model in an XML record. Decoupling the raw experimental data from…
Descriptors: Models, Data Analysis, Computation, Science Experiments
Meighan, Michelle; MacNeil, Joseph; Falconer, Renee – Journal of Chemical Education, 2008
The relationship between pH and the aqueous solubility of heavy metals is explored by considering the environmental impact of acidic mine drainage. Acid mine drainage is an important environmental concern in many areas of the United States. Associated with coal mining in the East and hard rock mining in the West, the acidity originates primarily…
Descriptors: Mining, Chemistry, Environment, Metallurgy

Parnis, J. Mark; Thompson, Matthew G. K. – Journal of Chemical Education, 2004
An introductory undergraduate physical organic chemistry exercise that introduces the harmonic oscillator's use in vibrational spectroscopy is developed. The analysis and modeling exercise begins with the students calculating the stretching modes of common organic molecules with the help of the quantum mechanical harmonic oscillator (QMHO) model.
Descriptors: Spectroscopy, Organic Chemistry, Models, Undergraduate Students

Horvath, Otto; Papp, Sandor – Journal of Chemical Education, 1988
States that if photochemical reactions can be followed spectrophotometrically, reactivities can be estimated by evaluating data from only one curve. Studies such a system using computerized evaluation and simulation. Uses chlorocuprate(II) complexes in acetonitrile solutions for the model systems. (MVL)
Descriptors: Chemical Analysis, Chemical Equilibrium, Chemical Reactions, Chemistry