NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 46 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Beni B. Dangi; Maggie A. Cooper; Nathaniel Carnegie; Judy Clark – Journal of Chemical Education, 2025
A laboratory experiment has been designed for teaching laboratories aimed at training students in the basics of spectroscopy in junior and senior level undergraduate chemistry courses. Despite the ubiquity of light-based tools in modern science, students often find it difficult to comprehend light and light-matter interactions. A portable…
Descriptors: Undergraduate Students, Chemistry, Science Instruction, Spectroscopy
Peer reviewed Peer reviewed
Direct linkDirect link
Hughes, Stephen; Wegener, Margaret; Gurung, Som – Physics Education, 2022
In this paper, a simple method is described for visually demonstrating that the wavelength of light reduces when entering a medium of higher refractive index. When a violet laser (405 nm) is reflected off the surface of a Blu-ray disc (track spacing 320 nm) diffraction cannot occur since the wavelength is greater than the track spacing. However,…
Descriptors: Science Instruction, Physics, Light, Lasers
Peer reviewed Peer reviewed
Direct linkDirect link
Pal, Arnab; Panchadhyayee, Pradipta; Sahu, Kriti R.; Syam, Debapriyo – Physics Teacher, 2022
The refractive index is a number that governs how light changes its direction of propagation as it enters one material medium from another. This phenomenon is known as refraction and the angles of incidence and refraction of light, referred to the normal to the interface of the two media at the point of incidence, are related by Snell's law. The…
Descriptors: Science Instruction, Physics, Light, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Avvari, Ravi Kant – Physics Teacher, 2020
A diffraction grating is a plane surface having a large number of closely spaced slits running in parallel. When light of appropriate wavelength is incident on a diffraction grating it functions as a spectrometer, able to separate the light into its spectral components. Physical examples of interest for diffraction in the real world are…
Descriptors: Clothing, Light, Lasers, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Goev, Gosho; Velinov, Tzvetan – Physics Education, 2022
In this paper, we propose a simple yet generic and versatile method to measure the position of a moving body as a function of time. Apart from very basic equipment such as carts and wheels, only a laser pointer or a similar device and a smartphone are necessary. By attaching a source of light to a cart and video filming its movement on a…
Descriptors: Measurement Techniques, Science Instruction, Motion, Physics
Peer reviewed Peer reviewed
Direct linkDirect link
Hughes, Stephen; Gurung, Som – Physics Education, 2021
Huygens' principle in which every point on a propagating wave acts like a point source of radiation is a foundation principle of physics. Normally, Huygens' principle is demonstrated by passing a wave, for example a water or light wave through an aperture comparable in size to the wavelength. In this paper, an experiment is described in which a…
Descriptors: Physics, Science Instruction, Teaching Methods, Scientific Principles
Peer reviewed Peer reviewed
Direct linkDirect link
Peters, Rachel E.; Park, Han Jung – Journal of Chemical Education, 2021
In this paper, we present simple demonstrations aimed at explaining the fundamental principles of the photoacoustic effect. To display the audible phenomenon that occurs as laser radiation gets absorbed by ethene gas, an optical chopper was used to modulate the power of a continuous-wave laser whose beam was directed into a gas. The absorbed…
Descriptors: Music, Acoustics, Light, Video Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Chiang, Chun-Ming; Cheng, Han-Yang – Physics Teacher, 2019
This study aims to measure Brewster's angle of glass and acrylic brick with an easy-to-obtain mobile application (app) by changing the tungsten light source to a red laser. The popularization of the smartphone has inspired many to use its various built-in sensors to carry out general physics experiments. Many others have adopted both a laser and a…
Descriptors: Physics, Science Instruction, Measurement, Telecommunications
Peer reviewed Peer reviewed
Direct linkDirect link
Hachmi, Ali; El Hadi, Mohammed; Essaadaoui, Rachid; Mommadi, Omar; Ouariach, Abdelaziz; El Moussaouy, Abdelaziz – Physics Education, 2022
The Arduino board and its communication with several sensors are becoming more and more popular in the physical science community. They offer inspiring possibilities for learning different physical concepts. In this article, we focused on creating a very practical educational system for experimenting with diffraction of laser light and graphically…
Descriptors: Electronic Equipment, Physics, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Lihua Xu; Joanne Mulligan; Chris Speldewinde; Vaughan Prain; Russell Tytler; Melinda Kirk; Ryan Healy – Australian Primary Mathematics Classroom, 2023
This article illustrates a learning sequence from the Interdisciplinary Mathematics and Science (IMS) Learning project, connecting science and mathematics learning in the primary school. Exploring light and its properties involved a series of investigations conducted in Grades 4 and 5 across three classes in two schools in regional Victoria. The…
Descriptors: Foreign Countries, Mathematics Instruction, Science Instruction, Interdisciplinary Approach
Peer reviewed Peer reviewed
Direct linkDirect link
Birriel, Jennifer J.; King, Damon – Physics Teacher, 2018
Fluorescence spectra excited by laser pointers have been the subject of several papers in "TPT". These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by…
Descriptors: Light, Radiation, Color, Lasers
Peer reviewed Peer reviewed
Direct linkDirect link
Krulj, Ivana; Nešic, Ljubiša – Physics Education, 2019
Students often have difficulties comprehending situations in which wave characteristics of light are manifested. After teaching wave optics, we studied the level of understanding of reflective diffraction of light with a group of secondary school students, and the phenomenon of diffraction in general. We analysed the possibility of using…
Descriptors: Physics, Science Instruction, Reflection, High School Students
Peer reviewed Peer reviewed
Direct linkDirect link
Joseph, Ariana; Budden, Katherine; Cisek, Richard; Tokarz, Danielle – Journal of Chemical Education, 2018
In a university third-year instrumental chemistry laboratory students build a laser based polarimeter for determining light scattering with commercially available optical components used in modern optics research laboratories. During this laboratory experiment, students learn that solutions containing molecules which scatter light also influence…
Descriptors: Chemistry, Science Instruction, Undergraduate Students, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Onorato, Pasquale; Gratton, Luigi; Malgieri, Massimiliano; Oss, Stefano – Physics Education, 2017
The lifetimes of the photoluminescent compounds contained in the coating of fluorescent compact lamps are usually measured using specialised instruments, including pulsed lasers and/or spectrofluorometers. Here we discuss how some low cost apparatuses, based on the use of either sensors for the educational lab or commercial digital photo cameras,…
Descriptors: Science Instruction, Light, Physics, Science Experiments
Peer reviewed Peer reviewed
Direct linkDirect link
Papacosta, Pangratios; Linscheid, Nathan – Physics Teacher, 2014
Understanding the inverse square law, how for example the intensity of light or sound varies with distance, presents conceptual and mathematical challenges. Students know intuitively that intensity decreases with distance. A light source appears dimmer and sound gets fainter as the distance from the source increases. The difficulty is in…
Descriptors: Science Instruction, Physics, Scientific Concepts, Lasers
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4