NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…63
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 63 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rohani, Narjes; Gal, Kobi; Gallagher, Michael; Manataki, Areti – International Educational Data Mining Society, 2023
Massive Open Online Courses (MOOCs) make high-quality learning accessible to students from all over the world. On the other hand, they are known to exhibit low student performance and high dropout rates. Early prediction of student performance in MOOCs can help teachers intervene in time in order to improve learners' future performance. This is…
Descriptors: Prediction, Academic Achievement, Health Education, Data Science
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kasakowskij, Regina; Haake, Joerg M.; Seidel, Niels – International Educational Data Mining Society, 2023
Improving competence requires practicing, e.g. by solving tasks. The Self-Assessment task type is a new form of scalable online task providing immediate feedback, sample solution and iterative improvement within the newly developed SAFRAN plugin. Effective learning not only requires suitable tasks but also their meaningful usage within the…
Descriptors: Self Evaluation (Individuals), Student Behavior, College Students, Learning Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Li, Yuheng; Rakovic, Mladen; Poh, Boon Xin; Gaševic, Dragan; Chen, Guanliang – International Educational Data Mining Society, 2022
Learning objectives, especially those well defined by applying Bloom's taxonomy for Cognitive Objectives, have been widely recognized as important in various teaching and learning practices. However, many educators have difficulties developing learning objectives appropriate to the levels in Bloom's taxonomy, as they need to consider the…
Descriptors: Educational Objectives, Taxonomy, Universities, Cognitive Ability
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Ma, Boxuan; Hettiarachchi, Gayan Prasad; Fukui, Sora; Ando, Yuji – International Educational Data Mining Society, 2023
Vocabulary proficiency diagnosis plays an important role in the field of language learning, which aims to identify the level of vocabulary knowledge of a learner through his or her learning process periodically, and can be used to provide personalized materials and feedback in language-learning applications. Traditional approaches are widely…
Descriptors: Vocabulary Development, Second Language Instruction, Second Language Learning, Language Proficiency
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tsutsumi, Emiko; Kinoshita, Ryo; Ueno, Maomi – International Educational Data Mining Society, 2021
Knowledge tracing (KT), the task of tracking the knowledge state of each student over time, has been assessed actively by artificial intelligence researchers. Recent reports have described that Deep-IRT, which combines Item Response Theory (IRT) with a deep learning model, provides superior performance. It can express the abilities of each student…
Descriptors: Item Response Theory, Prediction, Accuracy, Artificial Intelligence
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Doewes, Afrizal; Saxena, Akrati; Pei, Yulong; Pechenizkiy, Mykola – International Educational Data Mining Society, 2022
In Automated Essay Scoring (AES) systems, many previous works have studied group fairness using the demographic features of essay writers. However, individual fairness also plays an important role in fair evaluation and has not been yet explored. Initialized by Dwork et al., the fundamental concept of individual fairness is "similar people…
Descriptors: Scoring, Essays, Writing Evaluation, Comparative Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Fancsali, Stephen E.; Murphy, April; Ritter, Steve – International Educational Data Mining Society, 2022
Ten years after the announcement of the "rise of the super experiment" at Educational Data Mining 2012, challenges to implementing "internet scale" educational experiments often persist for educational technology providers, especially when they seek to test substantive instructional interventions. Studies that deploy and test…
Descriptors: Learning Analytics, Educational Technology, Barriers, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Williamson, Kimberly; Kizilcec, René F. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms such as Bayesian Knowledge Tracing (BKT) can provide students and teachers with helpful information about their progress towards learning objectives. Despite the popularity of BKT in the research community, the algorithm is not widely adopted in educational practice. This may be due to skepticism from users and…
Descriptors: Bayesian Statistics, Learning Processes, Computer Software, Learning Analytics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Lu, Chang; Cutumisu, Maria – International Educational Data Mining Society, 2021
Digitalization and automation of test administration, score reporting, and feedback provision have the potential to benefit large-scale and formative assessments. Many studies on automated essay scoring (AES) and feedback generation systems were published in the last decade, but few connected AES and feedback generation within a unified framework.…
Descriptors: Learning Processes, Automation, Computer Assisted Testing, Scoring
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pandey, Shalini; Karypis, George – International Educational Data Mining Society, 2019
Knowledge tracing is the task of modeling each student's mastery of knowledge concepts (KCs) as (s)he engages with a sequence of learning activities. Each student's knowledge is modeled by estimating the performance of the student on the learning activities. It is an important research area for providing a personalized learning platform to…
Descriptors: Learning Processes, Databases, Intelligent Tutoring Systems, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Nasir, Jauwairia; Kothiyal, Aditi; Sheng, Haoyu; Dillenbourg, Pierre – International Educational Data Mining Society, 2023
Transactive discussion during collaborative learning is crucial for building on each other's reasoning and developing problem solving strategies. In a tabletop collaborative learning activity, student actions on the interface can drive their thinking and be used to ground discussions, thus affecting their problem-solving performance and learning.…
Descriptors: Cooperative Learning, Thinking Skills, Problem Solving, Learning Activities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matayoshi, Jeffrey; Cosyn, Eric; Uzun, Hasan – International Educational Data Mining Society, 2022
As outlined by Benjamin Bloom, students working within a mastery learning framework must demonstrate mastery of the core prerequisite material before learning any subsequent material. Since many learning systems in use today adhere to these principles, an important component of such systems is the set of rules or algorithms that determine when a…
Descriptors: Guidelines, Mastery Learning, Learning Processes, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rho, Jihyun; Rau, Martina A.; Van Veen, Barry D. – International Educational Data Mining Society, 2022
Instruction in many STEM domains heavily relies on visual representations, such as graphs, figures, and diagrams. However, students who lack representational competencies do not benefit from these visual representations. Therefore, students must learn not only content knowledge but also representational competencies. Further, as learning…
Descriptors: Learning Processes, Models, Introductory Courses, Engineering Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shi, Yang; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2022
Knowledge tracing (KT) models are a popular approach for predicting students' future performance at practice problems using their prior attempts. Though many innovations have been made in KT, most models including the state-of-the-art Deep KT (DKT) mainly leverage each student's response either as correct or incorrect, ignoring its content. In…
Descriptors: Programming, Knowledge Level, Prediction, Instructional Innovation
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5