Publication Date
In 2025 | 1 |
Since 2024 | 4 |
Since 2021 (last 5 years) | 7 |
Since 2016 (last 10 years) | 12 |
Since 2006 (last 20 years) | 15 |
Descriptor
Source
Journal of Educational Data… | 15 |
Author
Kenneth Koedinger | 2 |
Almeda, Ma. Victoria | 1 |
Anirudhan Badrinath | 1 |
Baker, Ryan S. | 1 |
Biswas, Gautam | 1 |
Bolsinova, Maria | 1 |
Brandon Zhang | 1 |
Carolyn P. Rosé | 1 |
Chi, Min | 1 |
Dan, Alex | 1 |
Delianidi, Marina | 1 |
More ▼ |
Publication Type
Journal Articles | 15 |
Reports - Research | 13 |
Reports - Descriptive | 2 |
Numerical/Quantitative Data | 1 |
Education Level
Junior High Schools | 3 |
Middle Schools | 3 |
Secondary Education | 3 |
Elementary Education | 1 |
Grade 8 | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Audience
Location
Netherlands | 1 |
Tennessee | 1 |
Virginia | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Delianidi, Marina; Diamantaras, Konstantinos – Journal of Educational Data Mining, 2023
Student performance is affected by their knowledge which changes dynamically over time. Therefore, employing recurrent neural networks (RNN), which are known to be very good in dynamic time series prediction, can be a suitable approach for student performance prediction. We propose such a neural network architecture containing two modules: (i) a…
Descriptors: Academic Achievement, Prediction, Cognitive Measurement, Bayesian Statistics
Anirudhan Badrinath; Zachary Pardos – Journal of Educational Data Mining, 2025
Bayesian Knowledge Tracing (BKT) is a well-established model for formative assessment, with optimization typically using expectation maximization, conjugate gradient descent, or brute force search. However, one of the flaws of existing optimization techniques for BKT models is convergence to undesirable local minima that negatively impact…
Descriptors: Bayesian Statistics, Intelligent Tutoring Systems, Problem Solving, Audience Response Systems
Yang Shi; Robin Schmucker; Keith Tran; John Bacher; Kenneth Koedinger; Thomas Price; Min Chi; Tiffany Barnes – Journal of Educational Data Mining, 2024
Understanding students' learning of knowledge components (KCs) is an important educational data mining task and enables many educational applications. However, in the domain of computing education, where program exercises require students to practice many KCs simultaneously, it is a challenge to attribute their errors to specific KCs and,…
Descriptors: Programming Languages, Undergraduate Students, Learning Processes, Teaching Models
John Stamper; Steven Moore; Carolyn P. Rosé; Philip I. Pavlik Jr.; Kenneth Koedinger – Journal of Educational Data Mining, 2024
LearnSphere is a web-based data infrastructure designed to transform scientific discovery and innovation in education. It supports learning researchers in addressing a broad range of issues including cognitive, social, and motivational factors in learning, educational content analysis, and educational technology innovation. LearnSphere integrates…
Descriptors: Learning Analytics, Web Sites, Data Use, Educational Technology
Sarsa, Sami; Leinonen, Juho; Hellas, Arto – Journal of Educational Data Mining, 2022
New knowledge tracing models are continuously being proposed, even at a pace where state-of-the-art models cannot be compared with each other at the time of publication. This leads to a situation where ranking models is hard, and the underlying reasons of the models' performance -- be it architectural choices, hyperparameter tuning, performance…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Memory
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Savi, Alexander O.; Deonovic, Benjamin E.; Bolsinova, Maria; van der Maas, Han L. J.; Maris, Gunter K. J. – Journal of Educational Data Mining, 2021
In learning, errors are ubiquitous and inevitable. As these errors may signal otherwise latent cognitive processes, tutors--and students alike--can greatly benefit from the information they provide. In this paper, we introduce and evaluate the Systematic Error Tracing (SET) model that identifies the possible causes of systematically observed…
Descriptors: Learning Processes, Cognitive Processes, Error Patterns, Models
Gervet, Theophile; Koedinger, Ken; Schneider, Jeff; Mitchell, Tom – Journal of Educational Data Mining, 2020
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized feedback and materials adapted to their level of understanding. Given a learner's history of past interactions with an ITS, a learner performance model estimates the current state of a learner's knowledge and predicts her…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Feedback (Response), Knowledge Level
Goldin, Ilya; Galyardt, April – Journal of Educational Data Mining, 2018
Data from student learning provide learning curves that, ideally, demonstrate improvement in student performance over time. Existing data mining methods can leverage these data to characterize and improve the domain models that support a learning environment, and these methods have been validated both with already-collected data, and in…
Descriptors: Predictor Variables, Models, Learning Processes, Matrices
Dan, Alex; Reiner, Miriam – Journal of Educational Data Mining, 2017
One of the recommended approaches in instructional design methods is to optimize the value of working memory capacity and avoid cognitive overload. Educational neuroscience offers novel processes and methodologies to analyze cognitive load based on physiological measures. Observing psychophysiological changes when they occur in response to the…
Descriptors: Brain Hemisphere Functions, Diagnostic Tests, Cognitive Ability, Psychophysiology
Mao, Ye; Lin, Chen; Chi, Min – Journal of Educational Data Mining, 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling…
Descriptors: Prediction, Pretests Posttests, Bayesian Statistics, Short Term Memory
Kai, Shimin; Almeda, Ma. Victoria; Baker, Ryan S.; Heffernan, Cristina; Heffernan, Neil – Journal of Educational Data Mining, 2018
Research on non-cognitive factors has shown that persistence in the face of challenges plays an important role in learning. However, recent work on wheel-spinning, a type of unproductive persistence where students spend too much time struggling without achieving mastery of skills, show that not all persistence is uniformly beneficial for learning.…
Descriptors: Decision Making, Models, Intervention, Computer Assisted Instruction
van de Sande, Brett – Journal of Educational Data Mining, 2013
Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…
Descriptors: Bayesian Statistics, Markov Processes, Student Evaluation, Probability
Werner, Linda; McDowell, Charlie; Denner, Jill – Journal of Educational Data Mining, 2013
Educational data mining can miss or misidentify key findings about student learning without a transparent process of analyzing the data. This paper describes the first steps in the process of using low-level logging data to understand how middle school students used Alice, an initial programming environment. We describe the steps that were…
Descriptors: Electronic Learning, Learning Processes, Educational Research, Data Collection
A Contextualized, Differential Sequence Mining Method to Derive Students' Learning Behavior Patterns
Kinnebrew, John S.; Loretz, Kirk M.; Biswas, Gautam – Journal of Educational Data Mining, 2013
Computer-based learning environments can produce a wealth of data on student learning interactions. This paper presents an exploratory data mining methodology for assessing and comparing students' learning behaviors from these interaction traces. The core algorithm employs a novel combination of sequence mining techniques to identify deferentially…
Descriptors: Data Analysis, Middle School Students, Information Retrieval, Student Behavior