NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Motivated Strategies for…1
What Works Clearinghouse Rating
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hai Li; Wanli Xing; Chenglu Li; Wangda Zhu; Simon Woodhead – Journal of Learning Analytics, 2025
Knowledge tracing (KT) is a method to evaluate a student's knowledge state (KS) based on their historical problem-solving records by predicting the next answer's binary correctness. Although widely applied to closed-ended questions, it lacks a detailed option tracing (OT) method for assessing multiple-choice questions (MCQs). This paper introduces…
Descriptors: Mathematics Tests, Multiple Choice Tests, Computer Assisted Testing, Problem Solving
Kirk P. Vanacore; Ji-Eun Lee; Alena Egorova; Erin Ottmar – Grantee Submission, 2023
To meet the goal of understanding students' complex learning processes and maximizing their learning outcomes, the field of learning analytics delves into the myriad of data captured as students use computer assisted learning platforms. Although many platforms associated with learning analytics focus on students' performance, performance on…
Descriptors: Learning Analytics, Outcomes of Education, Problem Solving, Learning Processes
Peer reviewed Peer reviewed
Direct linkDirect link
Arnon Hershkovitz; Norbert Noster; Hans-Stefan Siller; Michal Tabach – ZDM: Mathematics Education, 2024
Learning Analytics is concerned with the use of data collected in educational settings to support learning processes. We take a Learning Analytics approach to study the use of immediate feedback in digital classification tasks in mathematics. Feedback serves as an opportunity for learning, however its mere existence does not guarantee its use and…
Descriptors: Learning Analytics, Classification, Geometry, Mathematics Instruction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Floris, Francesco; Marchisio, Marina; Roman, Fabio; Sacchet, Matteo; Rabellino, Sergio – International Association for Development of the Information Society, 2022
Among the various kinds of learning analytics emerging especially in the latest decade, clicking patterns cover a prominent role, fostered by their success in analyzing several types of data concerning activity on the web. They can be defined as sets of clicks performed by users, in which every set is treated as the basic unit. Few research has…
Descriptors: Learner Engagement, Mathematics Instruction, Units of Study, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Interactive Learning Environments, 2024
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined 1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction and 2)…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matayoshi, Jeffrey; Cosyn, Eric; Uzun, Hasan – International Educational Data Mining Society, 2022
As outlined by Benjamin Bloom, students working within a mastery learning framework must demonstrate mastery of the core prerequisite material before learning any subsequent material. Since many learning systems in use today adhere to these principles, an important component of such systems is the set of rules or algorithms that determine when a…
Descriptors: Guidelines, Mastery Learning, Learning Processes, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tempelaar, Dirk – International Association for Development of the Information Society, 2022
E-tutorial learning aids as worked examples and hints have been established as effective instructional formats in problem-solving practices. However, less is known about variations in the use of learning aids across individuals at different stages in their learning process in student-centred learning contexts. This study investigates different…
Descriptors: Learning Analytics, Student Centered Learning, Learning Processes, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Educational Technology Research and Development, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods (k-means clustering, data visualization) to…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Lee, Ji-Eun; Chan, Jenny Yun-Chen; Botelho, Anthony; Ottmar, Erin – Grantee Submission, 2022
Online educational games have been widely used to support students' mathematics learning. However, their effects largely depend on student-related factors, the most prominent being their behavioral characteristics as they play the games. In this study, we applied a set of learning analytics methods ("k"-means clustering, data…
Descriptors: Computer Games, Educational Games, Mathematics Instruction, Learning Processes
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2023
This paper demonstrated how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. Using a data-driven approach, we examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance (i.e. posttest math knowledge scores) prediction; and…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Ji-Eun Lee; Amisha Jindal; Sanika Nitin Patki; Ashish Gurung; Reilly Norum; Erin Ottmar – Grantee Submission, 2022
This paper demonstrates how to apply Machine Learning (ML) techniques to analyze student interaction data collected in an online mathematics game. We examined: (1) how different ML algorithms influenced the precision of middle-school students' (N = 359) performance prediction; and (2) what types of in-game features were associated with student…
Descriptors: Teaching Methods, Algorithms, Mathematics Tests, Computer Games
Peer reviewed Peer reviewed
Direct linkDirect link
Folkestad, James; Pilgrim, Mary E.; Sencindiver, Ben; Harindranathan, Priya – Journal of Educational Technology, 2019
Many factors play a role in a students' learning experience, but students' course interaction behaviors are particularly important toward fostering success. Instructors build learning tools (such as videos, online quizzes, etc.) that provide students with the opportunity to extend their learning outside the classroom. These tools require students…
Descriptors: Calculus, Educational Technology, Introductory Courses, Mathematics Instruction
Steven Moore; John Stamper; Norman Bier; Mary Jean Blink – Grantee Submission, 2020
In this paper we show how we can utilize human-guided machine learning techniques coupled with a learning science practitioner interface (DataShop) to identify potential improvements to existing educational technology. Specifically, we provide an interface for the classification of underlying Knowledge Components (KCs) to better model student…
Descriptors: Learning Analytics, Educational Improvement, Classification, Learning Processes