Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 8 |
| Since 2017 (last 10 years) | 17 |
| Since 2007 (last 20 years) | 27 |
Descriptor
| Intelligent Tutoring Systems | 27 |
| Learning Processes | 27 |
| Prediction | 27 |
| Models | 14 |
| Computer Software | 9 |
| Data Analysis | 8 |
| Knowledge Level | 8 |
| Accuracy | 7 |
| Foreign Countries | 7 |
| Online Courses | 7 |
| Programming | 7 |
| More ▼ | |
Source
Author
Publication Type
| Reports - Research | 17 |
| Journal Articles | 13 |
| Speeches/Meeting Papers | 9 |
| Collected Works - Proceedings | 3 |
| Reports - Descriptive | 3 |
| Dissertations/Theses -… | 2 |
| Reports - Evaluative | 2 |
Education Level
Audience
Location
| China | 2 |
| France | 2 |
| Finland | 1 |
| Netherlands | 1 |
| North Carolina (Raleigh) | 1 |
| Pennsylvania (Pittsburgh) | 1 |
| Spain (Madrid) | 1 |
| Switzerland | 1 |
| Taiwan | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Program for International… | 1 |
What Works Clearinghouse Rating
Lu, Yu; Wang, Deliang; Chen, Penghe; Meng, Qinggang; Yu, Shengquan – International Journal of Artificial Intelligence in Education, 2023
As a prominent aspect of modeling learners in the education domain, knowledge tracing attempts to model learner's cognitive process, and it has been studied for nearly 30 years. Driven by the rapid advancements in deep learning techniques, deep neural networks have been recently adopted for knowledge tracing and have exhibited unique advantages…
Descriptors: Learning Processes, Artificial Intelligence, Intelligent Tutoring Systems, Data Analysis
Mao, Shun; Zhan, Jieyu; Wang, Yizhao; Jiang, Yuncheng – IEEE Transactions on Learning Technologies, 2023
For offering adaptive learning to learners in intelligent tutoring systems, one of the fundamental tasks is knowledge tracing (KT), which aims to assess learners' learning states and make prediction for future performance. However, there are two crucial issues in deep learning-based KT models. First, the knowledge concepts are used to predict…
Descriptors: Intelligent Tutoring Systems, Learning Processes, Prediction, Prior Learning
Mao, Ye – ProQuest LLC, 2021
Intelligent Tutoring Systems (ITSs) have emerged as valuable systems to promote active learning. It is critical to build accurate student models to support the learning process. In order to provide efficient and effective personalized instructions for students, tracking a student's time-varying knowledge state is essential to an ITS. Prior…
Descriptors: Time Perspective, STEM Education, Intelligent Tutoring Systems, Learning Processes
David Roldan-Alvarez; Francisco J. Mesa – IEEE Transactions on Education, 2024
Artificial intelligence (AI) in programming teaching is something that still has to be explored, since in this area assessment tools that allow grading the students work are the most common ones, but there are not many tools aimed toward providing feedback to the students in the process of creating their program. In this work a small sized…
Descriptors: Intelligent Tutoring Systems, Grading, Artificial Intelligence, Feedback (Response)
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Hongxin Yan; Fuhua Lin; Kinshuk – Canadian Journal of Learning and Technology, 2024
Online higher education provides exceptional flexibility in learning but demands high self-regulated learning skills. The deficiency of self-regulated learning skills in many students highlights the need for support. This study introduces a confidence-based adaptive practicing system as an intelligent assessment and tutoring solution to enhance…
Descriptors: Self Management, Online Courses, Intelligent Tutoring Systems, Technology Uses in Education
Xu, Jia; Wei, Tingting; Lv, Pin – International Educational Data Mining Society, 2022
In an Intelligent Tutoring System (ITS), problem (or question) difficulty is one of the most critical parameters, directly impacting problem design, test paper organization, result analysis, and even the fairness guarantee. However, it is very difficult to evaluate the problem difficulty by organized pre-tests or by expertise, because these…
Descriptors: Prediction, Programming, Natural Language Processing, Databases
Pandey, Shalini; Karypis, George – International Educational Data Mining Society, 2019
Knowledge tracing is the task of modeling each student's mastery of knowledge concepts (KCs) as (s)he engages with a sequence of learning activities. Each student's knowledge is modeled by estimating the performance of the student on the learning activities. It is an important research area for providing a personalized learning platform to…
Descriptors: Learning Processes, Databases, Intelligent Tutoring Systems, Knowledge Level
Gervet, Theophile; Koedinger, Ken; Schneider, Jeff; Mitchell, Tom – Journal of Educational Data Mining, 2020
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized feedback and materials adapted to their level of understanding. Given a learner's history of past interactions with an ITS, a learner performance model estimates the current state of a learner's knowledge and predicts her…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Feedback (Response), Knowledge Level
Ni, Aohua; Cheung, Alan – Education and Information Technologies, 2023
Previous studies have demonstrated the effectiveness of intelligent tutoring systems (ITS) in facilitating English learning. However, no empirical research has been conducted on secondary students' intention to use ITSs in the language domain. This study proposes an extended technology acceptance model (TAM) to predict secondary students'…
Descriptors: Intelligent Tutoring Systems, English (Second Language), Second Language Learning, Second Language Instruction
Barollet, Théo; Bouchez Tichadou, Florent; Rastello, Fabrice – International Educational Data Mining Society, 2021
In Intelligent Tutoring Systems (ITS), methods to choose the next exercise for a student are inspired from generic recommender systems, used, for instance, in online shopping or multimedia recommendation. As such, collaborative filtering, especially matrix factorization, is often included as a part of recommendation algorithms in ITS. One notable…
Descriptors: Intelligent Tutoring Systems, Prediction, Internet, Purchasing
Yanjin Long; Kenneth Holstein; Vincent Aleven – Grantee Submission, 2018
Accurately modeling individual students' knowledge growth is important in many applications of learning analytics. A key step is to decompose the knowledge targeted in the instruction into detailed knowledge components (KCs). We search for an accurate KC model for basic equation solving skills, using data from an intelligent tutoring system (ITS),…
Descriptors: Learning Processes, Mathematics Skills, Equations (Mathematics), Problem Solving
Roux, Lisa; Dagorret, Pantxika; Etcheverry, Patrick; Nodenot, Thierry; Marquesuzaa, Christophe; Lopisteguy, Philippe – International Association for Development of the Information Society, 2021
Distance computer-assisted learning is increasingly common, owing largely to the expansion and development of e-technology. Nevertheless, the available tools of the learning platforms have demonstrated their limits during the pandemic context, since many students, who were used to "face-to-face" education, got discouraged and dropped out…
Descriptors: Distance Education, Computer Software, Teacher Student Relationship, Supervision
Sungjin Nam – ProQuest LLC, 2020
This dissertation presents various machine learning applications for predicting different cognitive states of students while they are using a vocabulary tutoring system, DSCoVAR. We conduct four studies, each of which includes a comprehensive analysis of behavioral and linguistic data and provides data-driven evidence for designing personalized…
Descriptors: Vocabulary Development, Intelligent Tutoring Systems, Student Evaluation, Learning Analytics
Mao, Ye; Lin, Chen; Chi, Min – Journal of Educational Data Mining, 2018
Bayesian Knowledge Tracing (BKT) is a commonly used approach for student modeling, and Long Short Term Memory (LSTM) is a versatile model that can be applied to a wide range of tasks, such as language translation. In this work, we directly compared three models: BKT, its variant Intervention-BKT (IBKT), and LSTM, on two types of student modeling…
Descriptors: Prediction, Pretests Posttests, Bayesian Statistics, Short Term Memory
Previous Page | Next Page »
Pages: 1 | 2
Peer reviewed
Direct link
