NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Twissell, Adrian – Educational Technology & Society, 2018
Abstract electronics concepts are difficult to develop because the phenomena of interest cannot be readily observed. Visualisation skills support learning about electronics and can be applied at different levels of representation and understanding (observable, symbolic and abstract). Providing learners with opportunities to make transitions…
Descriptors: Electronics, Case Studies, Concept Formation, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Jun; Sha, Sha; Zheng, Qinghua; Zhang, Wei – International Journal of Distance Education Technologies, 2012
Assigning difficulty level indicators to the knowledge units helps the learners plan their learning activities more efficiently. This paper focuses on how to use the topology of a knowledge map to compute and rank the difficulty levels of knowledge units. Firstly, the authors present the hierarchical structure and properties of the knowledge map.…
Descriptors: Foreign Countries, Knowledge Level, Difficulty Level, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Knauf, Rainer; Sakurai, Yoshitaka; Tsuruta, Setsuo; Jantke, Klaus P. – Journal of Educational Computing Research, 2010
University education often suffers from a lack of an explicit and adaptable didactic design. Students complain about the insufficient adaptability to the learners' needs. Learning content and services need to reach their audience according to their different prerequisites, needs, and different learning styles and conditions. A way to overcome such…
Descriptors: Prerequisites, College Instruction, Educational Experiments, Cognitive Style
Peer reviewed Peer reviewed
Direct linkDirect link
Baschera, Gian-Marco; Gross, Markus – International Journal of Artificial Intelligence in Education, 2010
We present an inference algorithm for perturbation models based on Poisson regression. The algorithm is designed to handle unclassified input with multiple errors described by independent mal-rules. This knowledge representation provides an intelligent tutoring system with local and global information about a student, such as error classification…
Descriptors: Foreign Countries, Spelling, Intelligent Tutoring Systems, Prediction