NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 14 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Paige, Myela; Schauer, Anastasia; Klesmith, Zoe; Davis, Alexis; Fu, Katherine – Advances in Engineering Education, 2023
In many mechanical engineering undergraduate curriculums, there are topics that are vital to the students' future careers in the manufacturing and design workforce that are not taught in-depth. As one of those topics, Geometric Dimensioning and Tolerancing, or GD&T, is vital to companies who develop and manufacture products because it allows…
Descriptors: Undergraduate Students, Engineering Education, Experiential Learning, Geometry
Peer reviewed Peer reviewed
PDF on ERIC Download full text
McPheron, Benjamin D.; Thangaraj, Charles V.; Thomas, Charles R. – Advances in Engineering Education, 2017
Laboratory courses can be difficult to fit into an engineering program at a liberal arts-focused university, which requires students to be exposed to appropriate breadth, as well as sufficient depth in their engineering education. One possible solution to this issue is to integrate laboratory exercises with lecture in a "studio" format,…
Descriptors: Engineering Education, Blended Learning, Class Activities, Homework
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Saterbak, Ann; Volz, Tracy; Wettergreen, Matthew – Advances in Engineering Education, 2016
Faculty at Rice University are creating instructional resources to support teaching first-year engineering design using a flipped classroom model. This implementation of flipped pedagogy is unusual because content-driven, lecture courses are usually targeted for flipping, not project-based design courses that already incorporate an abundance of…
Descriptors: Engineering Education, Educational Technology, Technology Uses in Education, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clark, Renee M.; Kaw, Autar; Besterfield-Sacre, Mary – Advances in Engineering Education, 2016
Blended, flipped, and semi-flipped instructional approaches were used in various sections of a numerical methods course for undergraduate mechanical engineers. During the spring of 2014, a blended approach was used; in the summer of 2014, a combination of blended and flipped instruction was used to deliver a semi-flipped course; and in the fall of…
Descriptors: Engineering Education, Undergraduate Students, Blended Learning, Educational Technology
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Russell, Jae-Eun; Andersland, Mark S.; Van Horne, Sam; Gikonyo, John; Sloan, Logan – Advances in Engineering Education, 2017
Post-secondary educators are increasingly experimenting with the possibility of blending or replacing traditional lecture-based instruction with student-centered instruction. Although some studies have been completed, much remains to be learned about when and why student-centered instruction works and the effectiveness of specific approaches. The…
Descriptors: Lecture Method, Engineering Education, Outcomes of Education, Student Centered Learning
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clark, Renee M.; Besterfield-Sacre, Mary; Budny, Daniel; Bursic, Karen M.; Clark, William W.; Norman, Bryan A.; Parker, Robert S.; Patzer, John F., II; Slaughter, William S. – Advances in Engineering Education, 2016
In the 2013-2014 school year, we implemented the "flipped classroom" as part of an initiative to drive active learning, student engagement and enhanced learning in our school. The flipped courses consisted of freshman through senior engineering classes in introductory programming, statics/mechanics, mechanical design, bio-thermodynamics,…
Descriptors: Engineering Education, Technology Uses in Education, Educational Technology, Homework
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Webster, Donald R.; Majerich, David M.; Madden, Amanda G. – Advances in Engineering Education, 2016
A flipped classroom approach was implemented in an undergraduate fluid mechanics course. Students watched short, online video lectures before class, participated in active in-class problem solving sessions (in pairs), and completed individualized online quizzes weekly. In-class activities were designed to develop problem-solving skills and teach…
Descriptors: Mechanics (Physics), Undergraduate Students, Electronic Learning, Multimedia Materials
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Karabulut-Ilgu, Aliye; Jahren, Charles – Advances in Engineering Education, 2016
Engineering educators call for a widespread implementation of hybrid learning to respond to rapidly changing demands of the 21st century. In response to this call, a junior-level course in the Construction Engineering program entitled Construction Equipment and Heavy Construction Methods was converted into a hybrid learning model. The overarching…
Descriptors: Program Evaluation, Blended Learning, Construction Industry, Engineering Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Dalrymple, Odesma; Sears, David A.; Evangelou, Demetra – Advances in Engineering Education, 2013
Inherently a discovery-based pedagogy, Disassemble/Analyze/Assemble (DAA) activities start with the artefact--an instance of a typically well-engineered solution. Through systemized disassembly and the subsequent analysis of components, students engage in an iterative process of observation and follow-up probing. In-turn, this process helps…
Descriptors: Engineering Education, Engineering, Control Groups, Experimental Groups
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gorlewicz, Jenna L.; Kratchman, Louis B.; Webster, Robert J., III – Advances in Engineering Education, 2014
The haptic paddle is a force-feedback joystick used at several universities in teaching System Dynamics, a core mechanical engineering undergraduate course where students learn to model dynamic systems in several domains. A second goal of the haptic paddle is to increase the accessibility of robotics and haptics by providing a low-cost device for…
Descriptors: College Instruction, Laboratory Equipment, Undergraduate Students, Engineering Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Brophy, Sean P.; Magana, Alejandra J.; Strachan, Alejandro – Advances in Engineering Education, 2013
We studied the use of online molecular dynamics simulations (MD) to enhance student abilities to understand the atomic processes governing plastic deformation in materials. The target population included a second-year undergraduate engineering course in the School of Materials Engineering at Purdue University. The objectives of the study were to…
Descriptors: Lecture Method, Undergraduate Study, Inquiry, Laboratories
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Okamoto, Nicole; Hsu, Tai-Ran; Bash, Cullen E. – Advances in Engineering Education, 2009
A novel thermal management of electronics course with an associated laboratory has been developed for mechanical, electrical, and computer engineering students. The lecture topics, term project, computer modeling project, and six associated experiments that were built from scratch are described. Over half of the course lectures as well as all lab…
Descriptors: Electronics, Engineering Education, Laboratories, Undergraduate Students
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Pinder-Grover, Tershia; Green, Katie R.; Millunchick, Joanna Mirecki – Advances in Engineering Education, 2011
In large lecture courses, it can be challenging for instructors to address student misconceptions, supplement background knowledge, and identify ways to motivate the various interests of all students during the allotted class time. Instructors can harness instructional technology such as screencasts, recordings that capture audio narration along…
Descriptors: Tutorial Programs, Computer Mediated Communication, Electronic Learning, Student Needs
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Linsey, Julie; Talley, Austin; White, Christina; Jensen, Dan; Wood, Kristin – Advances in Engineering Education, 2009
Active learning enhances engineering education. This paper presents rationale, curriculum supplements, and an approach to active learning that may be seamlessly incorporated into a traditional lecture-based engineering class. A framework of educational theory that structures the active learning experiences and includes consideration of learning…
Descriptors: Engineering Education, Active Learning, Mechanics (Physics), Educational Innovation